Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 20:822:153540.
doi: 10.1016/j.scitotenv.2022.153540. Epub 2022 Jan 29.

Identifying congeners and transformation products of organic contaminants within complex chemical mixtures in impacted surface waters with a top-down non-targeted screening workflow

Affiliations

Identifying congeners and transformation products of organic contaminants within complex chemical mixtures in impacted surface waters with a top-down non-targeted screening workflow

Emmanuel Eysseric et al. Sci Total Environ. .

Abstract

Over 350,000 compounds are registered for production and use including a high number of congeners found in complex chemical mixtures (CCMs). With such a high number of chemicals being released in the environment and degraded into transformation products (TPs), the challenge of identifying contaminants by non-targeted screening (NTS) is massive. "Bottom-up" studies, where compounds are subjected to conditions simulating environmental degradation to identify new TPs, are time consuming and cannot be relied upon to study the TPs of hundreds of thousands of compounds. Therefore, the development of "top-down" workflows, where the structural elucidation of unknown compounds is carried directly on the sample, is of interest. In this study, a top-down NTS workflow was developed using molecular networking and clustering (MNC). A total of 438 compounds were identified including 176 congeners of consumer product additives and 106 TPs. Reference standards were used to confirm the identification of 53 contaminants among them lesser-known pharmaceuticals (aliskiren, sitagliptin) and consumer product additives (lauramidopropyl betaine, 2,2,4-trimethyl-1,2-dihydroquinoline). The MNC tools allowed to group similar TPs and congeners together. As such, several previously unknown TPs of pesticides (metolachlor) and pharmaceuticals (gliclazide, irbesartan) were identified as tentative candidates or probable structures. Moreover, some congeners that had no entry on global repositories (PubChem, ChemSpider) were identified as probable structures. The workflow worked efficiently with oligomers containing ethylene oxide moieties, and with TPs structurally related to their parent compounds. The top-down approach shown in this study addresses several issues with the identification of congeners of industrial compounds from CCMs. Furthermore, it allows elucidating the structure of TPs directly from samples without relying on bottom-up studies under conditions discussed herein. The top-down workflow and the MNC tools show great potential for data mining and retrospective analysis of previous NTS studies.

Keywords: CluMSID; Consumer product additives; High-resolution mass spectrometry; Molecular networking; Pharmaceuticals.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.