Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar:282:121380.
doi: 10.1016/j.biomaterials.2022.121380. Epub 2022 Jan 18.

Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures

Affiliations
Free article

Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures

Wang Xi et al. Biomaterials. 2022 Mar.
Free article

Abstract

The field of intestinal biology is thirstily searching for different culture methods that complement the limitations of organoids, particularly the lack of a differentiated intestinal compartment. While being recognized as an important milestone for basic and translational biological studies, many primary cultures of intestinal epithelium (IE) rely on empirical trials using hydrogels of various stiffness, whose mechanical impact on epithelial organization remains vague until now. Here, we report the development of hydrogel scaffolds with a range of elasticities and their influence on IE expansion, organization, and differentiation. On stiff substrates (>5 kPa), mouse IE cells adopt a flat cell shape and detach in the short-term. In contrast, on soft substrates (80-500 Pa), they sustain for a long-term, pack into high density, develop columnar shape with improved apical-basal polarity and differentiation marker expression, a phenotype reminiscent of features in vivo mouse IE. We then developed a soft gel molding process to produce 3D Matrigel scaffolds of close-to-nature stiffness, which support and maintain a culture of mouse IE into crypt-villus architecture. Thus, the present work is up-to-date informative for the design of biomaterials for ex vivo intestinal models, offering self-renewal in vitro culture that emulates the mouse IE.

Keywords: 3D scaffold; Epithelial differentiation; Intestinal organoids; Long-term primary cell cultures; Substrate stiffness; Tissue engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources