Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 5;23(7):e202200061.
doi: 10.1002/cbic.202200061. Epub 2022 Feb 11.

Synthetic Neoglycoconjugates of Hepta- and Nonamannoside Ligands for Eliciting Oligomannose-Specific HIV-1-Neutralizing Antibodies

Affiliations

Synthetic Neoglycoconjugates of Hepta- and Nonamannoside Ligands for Eliciting Oligomannose-Specific HIV-1-Neutralizing Antibodies

Matteo Cattin et al. Chembiochem. .

Abstract

Oligomannose-type glycans on the spike protein of HIV-1 constitute relevant epitopes to elicit broadly neutralizing antibodies (bnAbs). Herein we describe an improved synthesis of α- and β-linked hepta- and nonamannosyl ligands that were subsequently converted into BSA and CRM197 neoglycoconjugates. We assembled the ligands from anomeric 3-azidopropyl spacer glycosides from select 3-O-protected thiocresyl mannoside donors. Chain extensions were achieved using [4+3] or [4+5] block synthesis of thiocresyl and trichloroacetimidate glycosyl donors. Subsequent global deprotection generated the 3-aminopropyl oligosaccharide ligands. ELISA binding data obtained with the β-anomeric hepta- and nonamannosyl conjugates with a selection of HIV-1 bnAbs showed comparable binding of both mannosyl ligands by Fab fragments yet lesser binding of the nonasaccharide conjugate by the corresponding IgG antibodies. These results support previous observations that a complete Man9 structure might not be the preferred antigenic binding motif for some oligomannose-specific antibodies, and have implications for glycoside designs to elicit oligomannose-targeted HIV-1-neutralizing antibodies.

Keywords: HIV/AIDS; glycoconjugates; glycosylation; oligomannosides; synthesis.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Binding of Fab fragments of bnAb PGT125, PGT126, PGT128, and PGT130 to the β-heptamannosyl conjugates 30 (MAC093 and NIT211–6) as well as the nonamannosyl conjugate 32 (MAC095). The two β-heptamannosyl and nonamannosyl conjugates were coated as solid-phase antigens onto ELISA plates at 76, 81, and 81 nM concentration.
Fig. 2.
Fig. 2.
Binding assay of PGT IgG bnAbs to the β-heptamannosyl conjugates 30 (MAC093 and NIT211–6) and the nonamannosyl conjugate 32 (MAC095). The coating concentration of the conjugates is the same as in Fig. 1.
Scheme 1.
Scheme 1.
Previously used route to introduce the β-anomeric spacer group.[13]
Scheme 2.
Scheme 2.
Synthesis of the anomeric spacer glycoside derivatives 8a8f.
Scheme 3.
Scheme 3.
Synthesis of the tetrasaccharide acceptor 12.
Scheme 4.
Scheme 4.
Synthesis of tri- and pentasaccharide glycosyl donors 15 and 17.
Scheme 5.
Scheme 5.
Synthesis of α-anomeric hepta- and nonasaccharide spacer derivatives 19 and 21.
Scheme 6.
Scheme 6.
Synthesis of the tetrasaccharide acceptor 24
Scheme 7.
Scheme 7.
Synthesis of the β-anomeric hepta- and nonamannoside derivatives 26 and 28.
Scheme 8.
Scheme 8.
Synthesis of the hepta- and nonamannosyl BSA and CRM197 conjugates 2932.

Similar articles

Cited by

References

    1. Gray GE, Laher F, Doherty T, Abdool Karim S, Hammer S, Mascola J, Beyrer C, Corey L, L. PLoS Biology 2016, 14, e1002372 (DOI: 10.1371/journal.pbio.1002372). - DOI - PMC - PubMed
    1. Corey L, Gray GE and Buchbinder SP, J Int AIDS Soc 2019, 22, e25289 (DOI:10.1002/jia2.25289) - DOI - PMC - PubMed
    1. Walker LM, Simek MD, Priddy F, Gach JS, Wagner D, Zwick MB, Phogat SK, Burton DR, PLoS Pathog 2010, 6, e1001028 (DOI: 10.1371/journal.ppat.1001028); - DOI - PMC - PubMed
    2. Jacob RA, Moyo T, Schomaker M, Abrahams F, Pujola BG, Dorfman JR, J. Virol. 2015, 89, 5264–5275; - PMC - PubMed
    3. Ditse Z, Muenchhoff M, Adland E, Joosteg P, Goulder P, Moore PL, Morris L, J. Virol. 2018, 92, e00878 (DOI: 10.1128/jvi.00878-18); - DOI - PMC - PubMed
    4. Tomaras GD, Binley JM, Gray ES, Crooks ET, Osawa K, Moore PL, Tumba N, Tong T, Shen X, Yates NL, Decker J, Wibmer CK, Gao F, Alam SM, Easterbrook P, Karim SA, Kamanga G, Crump JA, Cohen M, Shaw GM, Mascola JR, Haynes BF, Montefiori DC, Morris L, J. Virol. 2011, 85, 11502–11519; - PMC - PubMed
    5. Landais E, Huang X, Havenar-Daughton C, Murrell B, Price MA, Wickramasinghe L, Ramos A, Bian CB, Simek M, Allen S, Karita E, Kilembe W, Lakhi S, Inambao M, Kamali A, Sanders EJ, Anzala O, Edward V, Bekker L-G, Tang J, Gilmour J, Kosakovsky-Pond SL, Phung P, Wrin T, Crotty S, Godzik A, Poignard P. PLOS Path. 2016, 12, e 1005369 (DOI: 10.1371/journal.ppat.1005369); - DOI - PMC - PubMed
    6. Moore PL, Gray ES, Wibmer CK, Bhiman JN, Nonyane M, Sheward DJ, Hermanus T, Bajimaya S, Tumba NL, Abrahams M-R, Lambson BE, Ranchobe N, Ping L, Ngandu N, Karim QA, Karim SA, Swanstrom RI, Seaman MS, Williamson C, Morris L, Nat Med 2012, 18, 1688–1692. - PMC - PubMed
    1. Doores KJ, Kong L, Krumm SA, Le KM, Sok D, Laserson U, Garces F, Poignard P, Wilson IA, Burton DR, J. Virol. 2015, 89, 1105–1118. - PMC - PubMed
    1. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien J-P, Wang S-K, Ramos A, Chan-Hui P-Y, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong C-H, Phogat S, Wrin T, Simek MD, Koff WC, Wilson IA, Burton DR, Poignard P, Nature 2011, 477, 466–470. - PMC - PubMed

Publication types

LinkOut - more resources