Present and future bright and dark spots for coral reefs through climate change
- PMID: 35106864
- PMCID: PMC9303460
- DOI: 10.1111/gcb.16083
Present and future bright and dark spots for coral reefs through climate change
Abstract
Marine heatwaves can cause coral bleaching and reduce coral cover on reefs, yet few studies have identified "bright spots," where corals have recently shown a capacity to survive such pressures. We analyzed 7714 worldwide surveys from 1997 to 2018 along with 14 environmental and temperature metrics in a hierarchical Bayesian model to identify conditions that contribute to present-day coral cover. We also identified locations with significantly higher (i.e., "bright spots") and lower coral cover (i.e., "dark spots") than regionally expected. In addition, using 4-km downscaled data of Representative Concentration Pathways (RCPs) 4.5 and 8.5, we projected coral cover on reefs for the years 2050 and 2100. Coral cover on modern reefs was positively associated with historically high maximum sea-surface temperatures (SSTs), and negatively associated with high contemporary SSTs, tropical-cyclone frequencies, and human-population densities. By 2100, under RCP8.5, we projected relative decreases in coral cover of >40% on most reefs globally but projected less decline on reefs in Indonesia, Malaysia, the central Philippines, New Caledonia, Fiji, and French Polynesia, which should be focal localities for multinational networks of protected areas.
Keywords: bright spots; climate change; coral cover; coral cover projections; coral ecology; hierarchical Bayesian model.
© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Comment in
-
Coral reefs: The good and not so good news with future bright and dark spots for coral reefs through climate change.Glob Chang Biol. 2022 Aug;28(15):4506-4508. doi: 10.1111/gcb.16271. Epub 2022 Jun 7. Glob Chang Biol. 2022. PMID: 35593317 Free PMC article.
References
-
- Anthony, K. R. N. , Maynard, J. A. , Diaz‐pulido, G. , Mumby, P. J. , Marshall, P. A. , Cao, L. , & Hoegh‐guldberg, O. (2011). Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 17, 1798–1808. 10.1111/j.1365-2486.2010.02364.x - DOI
-
- Balaji, V. , Taylor, K. E. , Juckes, M. , Lawrence, B. N. , Durack, P. J. , Lautenschlager, M. , Blanton, C. , Cinquini, L. , Denvil, S. , Elkington, M. , Guglielmo, F. , Guilyardi, E. , Hassell, D. , Kharin, S. , Kindermann, S. , Nikonov, S. , Radhakrishnan, A. , Stockhause, M. , Weigel, T. , & Williams, D. (2018). Requirements for a global data infrastructure in support of CMIP6. Geoscientific Model Development, 11, 3659–3680. 10.5194/gmd-11-3659-2018 - DOI
-
- Barkley, H. C. , Cohen, A. L. , Mollica, N. R. , Brainard, R. E. , Rivera, H. E. , DeCarlo, T. M. , Lohmann, G. P. , Drenkard, E. J. , Aplert, A. E. , Young, C. W. , & Vargas‐Angel, B. (2018). Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Communication Biology, 1, 177. - PMC - PubMed
-
- Beger, M. , McGowan, J. , Treml, E. A. , Green, A. L. , White, A. T. , Wolff, N. H. , Klein, C. J. , Mumby, P. J. , & Possingham, H. P. (2015). Integrating regional conservation priorities for multiple objectives into national policy. Nature Communications, 6, 8208. 10.1038/ncomms9208 - DOI - PMC - PubMed
-
- Beyer, H. L. , Kennedy, E. V. , Beger, M. , Chen, C. A. , Cinner, J. E. , Darling, E. S. , Eakin, C. M. , Gates, R. D. , Heron, S. F. , Knowlton, N. , Obura, D. O. , Palumbi, S. R. , Possingham, H. P. , Puotinen, M. , Runting, R. K. , Skirving, W. J. , Spalding, M. , Wilson, K. A. , Wood, S. , … Hoegh‐Guldberg, O. (2018). Risk‐sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters, 11, e12587. 10.1111/conl.12587 - DOI
MeSH terms
LinkOut - more resources
Full Text Sources