Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;52(6):1295-1328.
doi: 10.1007/s40279-021-01620-9. Epub 2022 Feb 3.

The Effects of Dietary Protein Supplementation on Acute Changes in Muscle Protein Synthesis and Longer-Term Changes in Muscle Mass, Strength, and Aerobic Capacity in Response to Concurrent Resistance and Endurance Exercise in Healthy Adults: A Systematic Review

Affiliations

The Effects of Dietary Protein Supplementation on Acute Changes in Muscle Protein Synthesis and Longer-Term Changes in Muscle Mass, Strength, and Aerobic Capacity in Response to Concurrent Resistance and Endurance Exercise in Healthy Adults: A Systematic Review

Felicia A Hartono et al. Sports Med. 2022 Jun.

Abstract

Background: Engaging in both resistance and endurance exercise within the same training program, termed 'concurrent exercise training,' is common practice in many athletic disciplines that require a combination of strength and endurance and is recommended by a number of organizations to improve muscular and cardiovascular health and reduce the risk of chronic metabolic disease. Dietary protein ingestion supports skeletal muscle remodeling after exercise by stimulating the synthesis of muscle proteins and can optimize resistance exercise-training mediated increases in skeletal muscle size and strength; however, the effects of protein supplementation on acute and longer-term adaptive responses to concurrent resistance and endurance exercise are unclear.

Objectives: The purpose of this systematic review is to evaluate the effects of dietary protein supplementation on acute changes in muscle protein synthesis and longer-term changes in muscle mass, strength, and aerobic capacity in responses to concurrent resistance and endurance exercise in healthy adults.

Methods: A systematic search was conducted in five databases: Scopus, Embase, Medline, PubMed, and Web of Science. Acute and longer-term controlled trials involving concurrent exercise and protein supplementation in healthy adults (ages 18-65 years) were included in this systematic review. Main outcomes of interest were changes in skeletal muscle protein synthesis rates, muscle mass, muscle strength, and whole-body aerobic capacity (i.e., maximal/peak aerobic capacity [VO2max/peak]). The quality of studies was assessed using the National Institute of Health Quality Assessment for Controlled Intervention Studies.

Results: Four acute studies including 84 trained young males and ten longer-term studies including 167 trained and 391 untrained participants fulfilled the eligibility criteria. All included acute studies demonstrated that protein ingestion enhanced myofibrillar protein synthesis rates, but not mitochondrial protein synthesis rates during post-exercise recovery after an acute bout of concurrent exercise. Of the included longer-term training studies, five out of nine reported that protein supplementation enhanced concurrent training-mediated increases in muscle mass, while five out of nine studies reported that protein supplementation enhanced concurrent training-mediated increases in muscle strength and/or power. In terms of aerobic adaptations, all six included studies reported no effect of protein supplementation on concurrent training-mediated increases in VO2max/peak.

Conclusion: Protein ingestion after an acute bout of concurrent exercise further increases myofibrillar, but not mitochondrial, protein synthesis rates during post-exercise recovery. There is some evidence that protein supplementation during longer-term training further enhances concurrent training-mediated increases in skeletal muscle mass and strength/power, but not whole-body aerobic capacity (i.e., VO2max/peak).

PubMed Disclaimer

References

    1. Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol (Lond). 2017;595:2883–96. - DOI
    1. Shamim B, Devlin BL, Timmins RG, Tofari P, Lee Dow C, Coffey VG, et al. Adaptations to concurrent training in combination with high protein availability: a comparative trial in healthy, recreationally active men. Sports Med. 2018;48:2869–83. - PubMed - PMC - DOI
    1. Glowacki SP, Martin SE, Maurer A, Baek W, Green JS, Crouse SF. Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc. 2004;36:2119–27. - PubMed - DOI
    1. Hawley JA. Specificity of training adaptation: time for a rethink? J Physiol. 2008;586:1–2. - PubMed - PMC - DOI
    1. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29:218–22. - PubMed - DOI

Publication types

LinkOut - more resources