Probabilistic Graphical Models Applied to Biological Networks
- PMID: 35113399
- DOI: 10.1007/978-3-030-80352-0_7
Probabilistic Graphical Models Applied to Biological Networks
Abstract
Biological networks can be defined as a set of molecules and all the interactions among them. Their study can be useful to predict gene function, phenotypes, and regulate molecular patterns. Probabilistic graphical models (PGMs) are being widely used to integrate different data sources with modeled biological networks. The inference of these models applied to large-scale experiments of molecular biology allows us to predict influences of the experimental treatments in the behavior/phenotype of organisms. Here, we introduce the main types of PGMs and their applications in a biological networks context.
Keywords: Bioinformatics; Biological networks; System biology.
© 2021. Springer Nature Switzerland AG.
Similar articles
-
A probabilistic graphical model for system-wide analysis of gene regulatory networks.Bioinformatics. 2020 May 1;36(10):3192-3199. doi: 10.1093/bioinformatics/btaa122. Bioinformatics. 2020. PMID: 32096828
-
Probabilistic inference of molecular networks from noisy data sources.Bioinformatics. 2004 May 22;20(8):1205-13. doi: 10.1093/bioinformatics/bth061. Epub 2004 Feb 10. Bioinformatics. 2004. PMID: 14871876
-
Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks.Methods Mol Biol. 2019;1883:161-194. doi: 10.1007/978-1-4939-8882-2_7. Methods Mol Biol. 2019. PMID: 30547400
-
Integrative approaches for finding modular structure in biological networks.Nat Rev Genet. 2013 Oct;14(10):719-32. doi: 10.1038/nrg3552. Nat Rev Genet. 2013. PMID: 24045689 Free PMC article. Review.
-
Learning Differential Module Networks Across Multiple Experimental Conditions.Methods Mol Biol. 2019;1883:303-321. doi: 10.1007/978-1-4939-8882-2_13. Methods Mol Biol. 2019. PMID: 30547406 Review.
References
-
- Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E et al (2016) Database resources of the national center for biotechnology information. Nucleic Acids Res 44(D1):D7–D19
-
- Aguilera PA, Fernández A, Fernández R, Rumí R, Salmerón A (2011) Bayesian networks in environmental modelling. Environ Model Softw 26(12):1376–1388. https://doi.org/10.1016/j.envsoft.2011.06.004 - DOI
-
- Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118(21):4947–4957. https://doi.org/10.1242/jcs.02714 - DOI - PubMed
-
- Alm E, Arkin AP (2003) Biological networks. Curr Opin Struct Biol 13(2):193–202 - PubMed
-
- Alon U (2003) Biological network: the tinkerer as an engineer. Science (80- ) 301(September):1866–1867
MeSH terms
LinkOut - more resources
Full Text Sources