A multi-stage machine learning model for diagnosis of esophageal manometry
- PMID: 35115131
- PMCID: PMC8817064
- DOI: 10.1016/j.artmed.2021.102233
A multi-stage machine learning model for diagnosis of esophageal manometry
Abstract
High-resolution manometry (HRM) is the primary procedure used to diagnose esophageal motility disorders. Its manual interpretation and classification, including evaluation of swallow-level outcomes and then derivation of a study-level diagnosis based on Chicago Classification (CC), may be limited by inter-rater variability and inaccuracy of an individual interpreter. We hypothesized that an automatic diagnosis platform using machine learning and artificial intelligence approaches could be developed to accurately identify esophageal motility diagnoses. Further, a multi-stage modeling framework, akin to the step-wise approach of the CC, was utilized to leverage advantages of a combination of machine learning approaches including deep-learning models and feature-based models. Models were trained and tested using a dataset comprised of 1741 patients' HRM studies with CC diagnoses assigned by expert physician raters. In the swallow-level stage, three models based on convolutional neural networks (CNNs) were developed to predict swallow type and swallow pressurization (test accuracies of 0.88 and 0.93, respectively), and integrated relaxation pressure (IRP)(regression model with test error of 4.49 mmHg). At the study-level stage, model selection from families of the expert-knowledge-based rule models, xgboost models and artificial neural network(ANN) models were conducted. A simple model-agnostic strategy of model balancing motivated by Bayesian principles was utilized, which gave rise to model averaging weighted by precision scores. The averaged (blended) models and individual models were compared and evaluated, of which the best performance on test dataset is 0.81 in top-1 prediction, 0.92 in top-2 predictions. This is the first artificial-intelligence style model to automatically predict esophageal motility (CC) diagnoses from HRM studies using raw multi-swallow data and it achieved high accuracy. Thus, this proposed modeling framework could be broadly applied to assist with HRM interpretation in a clinical setting.
Keywords: Artificial intelligence; High-resolution manometry; Model averaging.
Copyright © 2021 Elsevier B.V. All rights reserved.
Conflict of interest statement
Conflicts of interest
Dustin A. Carlson: Medtronic (Speaking, Consulting), FLIP panometry (Shared intellectual property)
John E. Pandolfino: Crospon, Inc (stock options), FLIP panometry (Shared intellectual property), Given Imaging (Consultant, Grant, Speaking), Sandhill Scientific (Consulting, Speaking), Takeda (Speaking), Astra Zeneca (Speaking), Medtronic (Speaking. Consulting), Torax (Speaking, Consulting), Ironwood (Consulting), Impleo (Grant).
None: Wenjun Kou, Alexandra J. Baumann, Erica N. Donnan, Jacob M. Schauer, Mozziyar Etemadi
Figures
References
-
- Roman S, Huot L, Zerbib F, Des Varannes SB, Gourcerol G, Coffin B, Ropert A, Roux A, Mion F, High-resolution manometry improves the diagnosis of esophageal motility disorders in patients with dysphagia: a randomized multicenter study, American Journal of Gastroenterology 111 (3) (2016) 372–380. - PubMed
-
- Tolone S, Savarino E, Zaninotto G, Gyawali CP, Frazzoni M, de Bortoli N, Frazzoni L, del Genio G, Bodini G, Furnari M, et al., High-resolution manometry is superior to endoscopy and radiology in assessing and grading sliding hiatal hernia: A comparison with surgical in vivo evaluation, United European gastroenterology journal 6 (7) (2018) 981–989. - PMC - PubMed
-
- Rao SS, Parkman HP, Advanced training in neurogastroenterology and gastrointestinal motility, Gastroenterology 148 (5) (2015) 881–885. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
