Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 4;22(1):122.
doi: 10.1186/s12879-022-07047-5.

Studying patterns and predictors of HIV viral suppression using A Big Data approach: a research protocol

Affiliations

Studying patterns and predictors of HIV viral suppression using A Big Data approach: a research protocol

Jiajia Zhang et al. BMC Infect Dis. .

Abstract

Background: Given the importance of viral suppression in ending the HIV epidemic in the US and elsewhere, an optimal predictive model of viral status can help clinicians identify those at risk of poor viral control and inform clinical improvements in HIV treatment and care. With an increasing availability of electronic health record (EHR) data and social environmental information, there is a unique opportunity to improve our understanding of the dynamic pattern of viral suppression. Using a statewide cohort of people living with HIV (PLWH) in South Carolina (SC), the overall goal of the proposed research is to examine the dynamic patterns of viral suppression, develop optimal predictive models of various viral suppression indicators, and translate the models to a beta version of service-ready tools for clinical decision support.

Methods: The PLWH cohort will be identified through the SC Enhanced HIV/AIDS Reporting System (eHARS). The SC Office of Revenue and Fiscal Affairs (RFA) will extract longitudinal EHR clinical data of all PLWH in SC from multiple health systems, obtain data from other state agencies, and link the patient-level data with county-level data from multiple publicly available data sources. Using the deidentified data, the proposed study will consist of three operational phases: Phase 1: "Pattern Analysis" to identify the longitudinal dynamics of viral suppression using multiple viral load indicators; Phase 2: "Model Development" to determine the critical predictors of multiple viral load indicators through artificial intelligence (AI)-based modeling accounting for multilevel factors; and Phase 3: "Translational Research" to develop a multifactorial clinical decision system based on a risk prediction model to assist with the identification of the risk of viral failure or viral rebound when patients present at clinical visits.

Discussion: With both extensive data integration and data analytics, the proposed research will: (1) improve the understanding of the complex inter-related effects of longitudinal trajectories of HIV viral suppressions and HIV treatment history while taking into consideration multilevel factors; and (2) develop empirical public health approaches to achieve ending the HIV epidemic through translating the risk prediction model to a multifactorial decision system that enables the feasibility of AI-assisted clinical decisions.

Keywords: Data analytics; HIV/AIDS; Pattern analysis; Viral rebound; Viral suppression.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests beyond NIH funding. This study is funded by the National Institutes of Health (NIH).

Figures

Fig. 1
Fig. 1
Conceptual model of the proposed research
Fig. 2
Fig. 2
Risk prediction model
Fig. 3
Fig. 3
Multiple task learning architecture
Fig. 4
Fig. 4
Process of translational phase
Fig. 5
Fig. 5
User interfaces of the prototype for viral load (VL) level prediction

References

    1. Harris NS, Johnson AS, Huang Y-LA, Kern D, Fulton P, Smith DK, et al. Vital signs: Status of human immunodeficiency virus testing, viral suppression, and HIV preexposure prophylaxis—United States, 2013–2018. MMWR Morb Mort Wkly Rep. 2019;68(48):1117–1123. doi: 10.15585/mmwr.mm6848e1. - DOI - PMC - PubMed
    1. Lee JS, Cole SR, Richardson DB, Dittmer DP, Miller WC, Moore RD, et al. Incomplete viral suppression and mortality in HIV patients after antiretroviral therapy initiation. AIDS. 2017;31(14):1989–1997. doi: 10.1097/QAD.0000000000001573. - DOI - PMC - PubMed
    1. Centers for Disease Control and Prevention. Monitoring selected national HIV prevention and care objectives by using HIV surveillance data—United States and 6 dependent areas, 2018. HIV Surveillance Supplemental Report 2020;25(2). http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html. Published May 2020.
    1. Ending the HIV epidemic plan-homepage|SCDHEC [Internet]. [cited 2021Nov22]. Available from: https://scdhec.gov/sites/default/files/media/document/SC-Ending-HIV-Epid....
    1. Services USDoHH. Ending the HIV Epidemic: a plan for America. 2021 [cited 2021Nov22]. Available at: https://www.hhsgov/blog/2019/02/05/ending-the-hiv-epidemic-a-plan-for-am....