Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 4;14(1):22.
doi: 10.1186/s13195-022-00962-4.

Challenges at the APOE locus: a robust quality control approach for accurate APOE genotyping

Affiliations

Challenges at the APOE locus: a robust quality control approach for accurate APOE genotyping

Michael E Belloy et al. Alzheimers Res Ther. .

Abstract

Background: Genetic variants within the APOE locus may modulate Alzheimer's disease (AD) risk independently or in conjunction with APOE*2/3/4 genotypes. Identifying such variants and mechanisms would importantly advance our understanding of APOE pathophysiology and provide critical guidance for AD therapies aimed at APOE. The APOE locus however remains relatively poorly understood in AD, owing to multiple challenges that include its complex linkage structure and uncertainty in APOE*2/3/4 genotype quality. Here, we present a novel APOE*2/3/4 filtering approach and showcase its relevance on AD risk association analyses for the rs439401 variant, which is located 1801 base pairs downstream of APOE and has been associated with a potential regulatory effect on APOE.

Methods: We used thirty-two AD-related cohorts, with genetic data from various high-density single-nucleotide polymorphism microarrays, whole-genome sequencing, and whole-exome sequencing. Study participants were filtered to be ages 60 and older, non-Hispanic, of European ancestry, and diagnosed as cognitively normal or AD (n = 65,701). Primary analyses investigated AD risk in APOE*4/4 carriers. Additional supporting analyses were performed in APOE*3/4 and 3/3 strata. Outcomes were compared under two different APOE*2/3/4 filtering approaches.

Results: Using more conventional APOE*2/3/4 filtering criteria (approach 1), we showed that, when in-phase with APOE*4, rs439401 was variably associated with protective effects on AD case-control status. However, when applying a novel filter that increases the certainty of the APOE*2/3/4 genotypes by applying more stringent criteria for concordance between the provided APOE genotype and imputed APOE genotype (approach 2), we observed that all significant effects were lost.

Conclusions: We showed that careful consideration of APOE genotype and appropriate sample filtering were crucial to robustly interrogate the role of the APOE locus on AD risk. Our study presents a novel APOE filtering approach and provides important guidelines for research into the APOE locus, as well as for elucidating genetic interaction effects with APOE*2/3/4.

Keywords: Alzheimer’s disease (AD); Apolipoprotein E (APOE); Genetics; Haplotypes; Novel approaches; rs439401.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schematic overview of the study design and two APOE*2/3/4 filtering approaches
Fig. 2
Fig. 2
Limitations in APOE filtering approach 1 are reflected in discordance between imputed and provided APOE genotypes, particularly in APOE*4/4 carriers. A APOE*4/4-rs439401 carrier cohort distributions. The top section shows the distribution of prioritized APOE genotype source in approach 1, indicating that APOE*4/4 carriers of rs439401 had very few WGS/WES-verified APOE*4/4 data. The bottom section shows pie charts for carrier distributions across cohorts (Additional data in Table S8). The red arrow indicates that a large fraction of control rs439401 carriers was contributed by MIRAGE. B Concordance rates between provided and imputed APOE per cohort (additional data in Table S9). The red arrow indicates that MIRAGE had the lowest concordance rate, suggesting potential limitations with its provided APOE data that could explain observations in A. C Concordance rates between provided and imputed APOE for the discovery sample, considering multiple strata (additional data in Table S10). APOE*4/4 strata considered provided APOE*4/4 genotypes after applying APOE filtering approach 1. Note decreased concordance in APOE*4/4 controls compared to cases. Note strongly decreased concordance for rs439401 carriers, specifically controls. Simulations confirmed that APOE*4/4 controls are more likely than cases to not actually be APOE*4/4 carriers (cf. Fig. S6-7). Abbreviations: CN, cognitively normal; AD, Alzheimer’s disease; OR
Fig. 3
Fig. 3
Overview of rs439401 frequencies and case-control association findings, comparing APOE filtering approach 1 to approach 2. A Carrier frequencies across both approaches for APOE*4/4 and APOE*3/4 WT vs HOM groups, as well as in the Haplotype reference consortium v1.1 (HRC). Note decreased frequencies for rs439401 in approach 2 that appear concordant with the HRC. B, C Overview of association findings for all evaluated strata, comparing B approach 1 to C approach 2. Significant effects are denoted by an asterisk (*). Error bars show 95% confidence intervals. Note loss of significant effects in approach 2

References

    1. Belloy ME, Napolioni V, Greicius MD. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron. 2019;101:820–838. - PMC - PubMed
    1. Farrer LA, Cuppples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between Apolipoprotein E genotype and Alzheimer disease. JAMA. 1997;278:1349–1356. - PubMed
    1. Reiman EM, Arboleda-Velasquez JF, Quiroz YT, et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11:667. - PMC - PubMed
    1. Arboleda-Velasquez JF, Lopera F, O’Hare M, et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019. 10.1038/s41591-019-0611-3. - PMC - PubMed
    1. Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. APOE and dementia – resequencing and genotyping in 105,597 individuals. Alzheimer’s Dement. 2020;16:1624–1637. - PMC - PubMed

Publication types

Grants and funding

LinkOut - more resources