Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;49(7):2251-2264.
doi: 10.1007/s00259-022-05682-3. Epub 2022 Feb 5.

Clozapine induces astrocyte-dependent FDG-PET hypometabolism

Affiliations

Clozapine induces astrocyte-dependent FDG-PET hypometabolism

Andréia Rocha et al. Eur J Nucl Med Mol Imaging. 2022 Jun.

Abstract

Purpose: Advances in functional imaging allowed us to visualize brain glucose metabolism in vivo and non-invasively with [18F]fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging. In the past decades, FDG-PET has been instrumental in the understanding of brain function in health and disease. The source of the FDG-PET signal has been attributed to neuronal uptake, with hypometabolism being considered as a direct index of neuronal dysfunction or death. However, other brain cells are also metabolically active, including astrocytes. Based on the astrocyte-neuron lactate shuttle hypothesis, the activation of the glutamate transporter 1 (GLT-1) acts as a trigger for glucose uptake by astrocytes. With this in mind, we investigated glucose utilization changes after pharmacologically downregulating GLT-1 with clozapine (CLO), an anti-psychotic drug.

Methods: Adult male Wistar rats (control, n = 14; CLO, n = 12) received CLO (25/35 mg kg-1) for 6 weeks. CLO effects were evaluated in vivo with FDG-PET and cortical tissue was used to evaluate glutamate uptake and GLT-1 and GLAST levels. CLO treatment effects were also assessed in cortical astrocyte cultures (glucose and glutamate uptake, GLT-1 and GLAST levels) and in cortical neuronal cultures (glucose uptake).

Results: CLO markedly reduced in vivo brain glucose metabolism in several brain areas, especially in the cortex. Ex vivo analyses demonstrated decreased cortical glutamate transport along with GLT-1 mRNA and protein downregulation. In astrocyte cultures, CLO decreased GLT-1 density as well as glutamate and glucose uptake. By contrast, in cortical neuronal cultures, CLO did not affect glucose uptake.

Conclusion: This work provides in vivo demonstration that GLT-1 downregulation induces astrocyte-dependent cortical FDG-PET hypometabolism-mimicking the hypometabolic signature seen in people developing dementia-and adds further evidence that astrocytes are key contributors of the FDG-PET signal.

Keywords: Astrocytes; Clozapine; FDG-PET; GLT-1; Glucose; Glutamate.

PubMed Disclaimer

References

    1. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, et al. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA. 2003;100:4879–84. https://doi.org/10.1073/pnas.0831078100 . - DOI - PubMed - PMC
    1. Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006;24:1687–94. https://doi.org/10.1111/j.1460-9568.2006.05056.x . - DOI - PubMed
    1. Supplie LM, Duking T, Campbell G, Diaz F, Moraes CT, Gotz M, et al. Respiration-deficient astrocytes survive as glycolytic cells in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2017;37:4231–42. https://doi.org/10.1523/JNEUROSCI.0756-16.2017 . - DOI
    1. Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR. Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res. 1997;49:617–26. https://doi.org/10.1002/(SICI)1097-4547(19970901)49:5%3c617::AID-JNR12%3... . - DOI - PubMed
    1. Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 2012;32:1152–66. https://doi.org/10.1038/jcbfm.2011.149 . - DOI - PubMed

LinkOut - more resources