Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Mar;35(3):370-3.
doi: 10.2337/diab.35.3.370.

The third phase of in vitro insulin secretion. Evidence for glucose insensitivity

The third phase of in vitro insulin secretion. Evidence for glucose insensitivity

J L Bolaffi et al. Diabetes. 1986 Mar.

Abstract

In this study, in vitro B-cell models are described, which may be applicable for studying the reported B-cell desensitization produced by hyperglycemia in IDDM and NIDDM. Using a programmable perifusion/perfusion system, insulin secretion from perifused islets was measured at 10-30-min intervals for 24-50 h. After 3-4 h continuous glucose (11 mM), a new phase of insulin release occurs in which secretion declines to, and remains at, approximately 25% maximal release. Results were similar when using: perifused islets embedded in Cytodex 3, or Bio-Gel P-2, 100-200 mesh; batchincubated islets with hourly changes of medium; and the isolated pancreas perfused for 8 h. Three different media, Hana HB 104 (fortified, fully defined medium), RPMI-1640 + 10% FBS, and perfusion bufferalbumin, were used. Despite reduced secretion to continuous glucose, each system responded vigorously to an acute stimulation with glucose-forskolin. Decreased secretion was primarily caused by decreased secretagogue efficiency (reduced fractional secretion). Prolonged stimulation with glucose or glucose-IBMX produced a similar waning of secretion regardless of the amount of insulin released. It is concluded that the third phase of insulin secretion may represent a secret-agogue-induced, signal desensitization of the B-cell, rather than exhaustion of a B-cell compartment of stored insulin.

PubMed Disclaimer

Publication types

LinkOut - more resources