Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 24;13(2):573-579.
doi: 10.1039/d1sc05861d. eCollection 2022 Jan 5.

Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water

Affiliations

Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water

Wei-Lei Zhou et al. Chem Sci. .

Abstract

Multivalent supramolecular assemblies have recently attracted extensive attention in the applications of soft materials and cell imaging. Here, we report a novel multivalent supramolecular assembly constructed from 4-(4-bromophenyl)pyridine-1-ium bromide modified hyaluronic acid (HABr), cucurbit[8]uril (CB[8]) and laponite® clay (LP), which could emit purely organic room-temperature phosphorescence (RTP) with a phosphorescence lifetime of up to 4.79 ms in aqueous solution via multivalent supramolecular interactions. By doping the organic dyes rhodamine B (RhB) or sulfonated rhodamine 101 (SR101) into the HABr/CB[8]/LP assembly, phosphorescence energy transfer was realized with high transfer efficiency (energy transfer efficiency = 73-80%) and ultrahigh antenna effect (antenna effect value = 308-362) within the phosphorescent light harvesting system. Moreover, owing to the dynamic nature of the noncovalent interactions, a wide-range spectrum of phosphorescence energy transfer outputs could be obtained not only in water but also on filter paper and a glass plate by adjusting the donor-acceptor ratio and, importantly, white-light emission was obtained, which could be used in the application of information encryption.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Schematic illustration of the construction of RTP light harvesting by the multivalent supramolecular assembly HABr/CB[8]/LP with RhB or SR101 in aqueous solution.
Scheme 1
Scheme 1. The synthetic route of HABr.
Fig. 2
Fig. 2. (a) Absorption spectra of free HABr (0.05 mM, grey), HABr/CB[8] ([CB[8]] = 0.025 mM, black), HABr/CB[8]/LP ([LP] = 0.01 wt%, blue) and HABr/CB[8]/LP ([LP] = 0.02 wt%, red) in water at 298 K; (b) phosphorescence spectra (delayed by 0.2 ms, Ex, slit = 5 nm; Em, slit = 10 nm) of HABr/CB[8] (black) and HABr/CB[8]/LP (red) ([HABr] = 0.1 mM, [CB[8]] = 0.05 mM, [LP] = 0.02 wt%) in water at 298 K (λex = 300 nm); the phosphorescence decay curves of (c) HABr/CB[8] and (d) HABr/CB[8]/LP at 500 nm at 298 K.
Fig. 3
Fig. 3. Normalized emission spectrum of HABr/CB[8]/LP and the absorption and emission spectra of (a) RhB and (c) SR101. Phosphorescence spectrum (delayed by 0.2 ms) of HABr/CB[8]/LP in aqueous solution with different concentrations of (b) RhB and (d) SR101. The antenna effect/ΦET of HABr/CB[8]/LP in aqueous solution with different concentrations of (e) RhB (according to emission of the donor: 500 nm, acceptor 1 : 585 nm); (f) SR101 (according to emission of the donor: 500 nm, acceptor 2 : 612 nm). ([HABr] = 0.1 mM, [CB[8]] = 0.05 mM, LP = 0.02 wt%, λex = 300 nm, 298 K).
Fig. 4
Fig. 4. Time-resolved PL decay curves of (a) HABr/CB[8]/LP/RhB and HABr/CB[8]/LP/SR101 at 500 nm, (b) HABr/CB[8]/LP/RhB at 585 nm and (c) HABr/CB[8]/LP/SR101 at 612 nm in aqueous solution at 298 K. ([HABr] = 0.1 mM, [CB[8]] = 0.05 mM, LP = 0.02 wt%, [RhB] = 4.0 × 10−6 M, [SR101] = 1.3 × 10−6 M, λex = 300 nm, 298 K). (d) A possible diagram of the mechanism of the RTP energy transfer process for the HABr/CB[8]/LP/RhB and HABr/CB[8]/LP/SR101 systems (abs. = absorption, fluo. = fluorescence, non. rad. = non-radiation, ISC = intersystem crossing, phos. = phosphorescence, PET = phosphorescence energy transfer, DF. = delayed fluorescence).
Fig. 5
Fig. 5. The CIE chromaticity diagrams of the photoluminescence color changes from varying the ratios of (a) RhB (inset: photographs of HABr/CB[8]/LP and HABr/CB[8]/LP/RhB) and (b) SR101(inset: photographs of HABr/CB[8]/LP, HABr/CB[8]/LP/0.005SR101 and HABr/CB[8]/LP/SR101). The photoluminescence inks based on the light harvesting system: (c) photographs writing ‘‘N’’ with HABr/CB[8]/LP, “K” with HABr/CB[8]/LP/RhB, “U” with HABr/CB[8]/LP/SR101 and “102” with HABr/CB[8]/LP/0.005SR101 (c) on filter paper under natural light and under UV light; (d) doped PVA on glass under natural light and under UV light.

References

    1. Fateminia S. M. A. Mao Z. Xu S. Yang Z. Chi Z. Liu B. Angew. Chem., Int. Ed. 2017;56:12160–12164. doi: 10.1002/anie.201705945. - DOI - PubMed
    2. Yang J. Xu Z. Wang B. Gao X. Ren Z. Wang J. Xie Y. Li J. Peng Q. Pu K. Li Z. Nat. Commun. 2018;9:840. doi: 10.1038/s41467-018-03236-6. - DOI - PMC - PubMed
    3. Jia X. Shao C. Bai X. Zhou Q. Wu B. Wang L. Yue B. Zhu H. Zhu L. Proc. Natl. Acad. Sci. U. S. A. 2019;116:4816–4821. doi: 10.1073/pnas.1821991116. - DOI - PMC - PubMed
    4. Wang J. Huang Z. Ma X. Tian H. Angew. Chem., Int. Ed. 2020;59:9928–9933. doi: 10.1002/anie.201914513. - DOI - PubMed
    5. Liu X.-Q. Zhang K. Gao J.-F. Chen Y.-Z. Tung C.-H. Wu L.-Z. Angew. Chem., Int. Ed. 2020;59:23456–23460. doi: 10.1002/anie.202007039. - DOI - PubMed
    6. Dang Q. Jiang Y. Wang J. Wang J. Zhang Q. Zhang M. Luo S. Xie Y. Pu K. Li Q. Li Z. Adv. Mater. 2020;32:2006752. doi: 10.1002/adma.202006752. - DOI - PubMed
    1. Cai S. Shi H. Tian D. Ma H. Cheng Z. Wu Q. Gu M. Huang L. An Z. Peng Q. Huang W. Adv. Funct. Mater. 2018;28:1705045. doi: 10.1002/adfm.201705045. - DOI
    2. Su Y. Phua S. Z. F. Li Y. Zhou X. Jana D. Liu G. Lim W. Q. Ong W. K. Yang C. Zhao Y. Sci. Adv. 2018;4:eaas9732. doi: 10.1126/sciadv.aas9732. - DOI - PMC - PubMed
    3. Zhang X. Du L. Zhao W. Zhao Z. Xiong Y. He X. Gao P. F. Alam P. Wang C. Li Z. Leng J. Liu J. Zhou C. Lam J. W. Y. Phillips D. L. Zhang G. Tang B. Z. Nat. Commun. 2019;10:5161. doi: 10.1038/s41467-019-13048-x. - DOI - PMC - PubMed
    4. Yao X. Wang J. Jiao D. Huang Z. Mhirsi O. Lossada F. Chen L. Haehnle B. Kuehne A. J. C. Ma X. Tian H. Walther A. Adv. Mater. 2021;33:2005973. doi: 10.1002/adma.202005973. - DOI - PMC - PubMed
    5. Wu H. Chi W. Chen Z. Liu G. Gu L. Bindra A. K. Yang G. Liu X. Zhao Y. Adv. Funct. Mater. 2019;29:1807243. doi: 10.1002/adfm.201807243. - DOI
    6. Gu L. Wu H. Ma H. Ye W. Jia W. Wang H. Chen H. Zhang N. Wang D. Qian C. An Z. Huang W. Zhao Y. Nat. Commun. 2020;11:944. doi: 10.1038/s41467-020-14792-1. - DOI - PMC - PubMed
    7. Gu L. Ye W. Liang X. Lv A. Ma H. Singh M. Jia W. Shen Z. Guo Y. Gao Y. Chen H. Wang D. Wu Y. Liu J. Wang H. Zheng Y.-X. An Z. Huang W. Zhao Y. J. Am. Chem. Soc. 2021;143:18527–18535. doi: 10.1021/jacs.1c08118. - DOI - PubMed
    8. Yang J. Fang M. Li Z. Acc. Mater. Res. 2021;2:644–654. doi: 10.1021/accountsmr.1c00084. - DOI
    1. Zhang Q. Li B. Huang S. Nomura H. Tanaka H. Adachi C. Nat. Photonics. 2014;8:326–332. doi: 10.1038/nphoton.2014.12. - DOI
    2. Kabe R. Notsuka N. Yoshida K. Adachi C. Adv. Mater. 2016;28:655–660. doi: 10.1002/adma.201504321. - DOI - PubMed
    3. Li Q. Li Z. Acc. Chem. Res. 2020;53:962–973. doi: 10.1021/acs.accounts.0c00060. - DOI - PubMed
    1. Ma X. Wang J. Tian H. Acc. Chem. Res. 2019;52:738–748. doi: 10.1021/acs.accounts.8b00620. - DOI - PubMed
    2. Zhao W. He Z. Tang B. Z. Nat. Rev. Mater. 2020;5:869–885. doi: 10.1038/s41578-020-0223-z. - DOI
    3. Zhang T. Ma X. Wu H. Zhu L. Zhao Y. Tian H. Angew. Chem., Int. Ed. 2020;59:11206–11216. doi: 10.1002/anie.201915433. - DOI - PubMed
    4. Huang Z. Ma X. Cell Rep. Phys. Sci. 2020;1:100167. doi: 10.1016/j.xcrp.2020.100167. - DOI
    1. Datta S. Saha M. L. Stang P. J. Acc. Chem. Res. 2018;51:2047–2063. doi: 10.1021/acs.accounts.8b00233. - DOI - PMC - PubMed
    2. Ai Y. Chan M. H. Chan A. K. Ng M. Li Y. Yam V. W. Proc. Natl. Acad. Sci. U. S. A. 2019;116:13856–13861. doi: 10.1073/pnas.1908034116. - DOI - PMC - PubMed
    3. Zhang Y. Su Y. Wu H. Wang Z. Wang C. Zheng Y. Zheng X. Gao L. Zhou Q. Yang Y. Chen X. Yang C. Zhao Y. J. Am. Chem. Soc. 2021;143:13675–13685. doi: 10.1021/jacs.1c05213. - DOI - PubMed
    4. Zhou W.-L. Chen Y. Liu Y. Acta Chim. Sin. 2020;78:1164–1176. doi: 10.6023/A20100486. - DOI
    5. Zhou W.-L. Chen Y. Lin W. Liu Y. Chem. Commun. 2021;57:11443–11456. doi: 10.1039/D1CC04672A. - DOI - PubMed
    6. Zhou W. Chen Y. Yu Q. Li P. Chen X. Liu Y. Chem. Sci. 2019;10:3346–3352. doi: 10.1039/C9SC00026G. - DOI - PMC - PubMed