Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb 1;135(3):jcs248534.
doi: 10.1242/jcs.248534. Epub 2022 Feb 7.

Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases

Affiliations
Review

Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases

Andrea Markovinovic et al. J Cell Sci. .

Abstract

Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.

Keywords: Endoplasmic reticulum; MAMs; Mitochondria; Neurodegenerative diseases; Neurons; Tethers.

PubMed Disclaimer

Conflict of interest statement

Competing interests The authors declare no competing or financial interests.

Publication types

MeSH terms

LinkOut - more resources