Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:295:133879.
doi: 10.1016/j.chemosphere.2022.133879. Epub 2022 Feb 4.

Differential effects of two prevalent environmental pollutants on host-pathogen dynamics

Affiliations
Free article

Differential effects of two prevalent environmental pollutants on host-pathogen dynamics

Numair Masud et al. Chemosphere. 2022 May.
Free article

Abstract

Chemical pollutants are a major factor implicated in freshwater habitat degradation and species loss. Microplastics and glyphosate-based herbicides are prevalent pollutants with known detrimental effects on animal welfare but our understanding of their impacts on infection dynamics are limited. Within freshwater vertebrates, glyphosate formulations reduce fish tolerance to infections, but the effects of microplastic consumption on disease tolerance have thus far not been assessed. Here, we investigated how microplastic (polypropylene) and the commercial glyphosate-based herbicide, Roundup®, impact fish tolerance to infectious disease and mortality utilising a model fish host-pathogen system. For uninfected fish, microplastic and Roundup had contrasting impacts on mortality as individual stressors, with microplastic increasing and Roundup decreasing mortality compared with control fish not exposed to pollutants. Concerningly, microplastic and Roundup combined had a strong interactive reversal effect by significantly increasing host mortality for uninfected fish (73% mortality). For infected fish, the individual stressors also had contrasting effects on mortality, with microplastic consumption not significantly affecting mortality and Roundup increasing mortality to 55%. When combined, these two pollutants had a moderate interactive synergistic effect on mortality levels of infected fish (53% mortality). Both microplastic and Roundup individually had significant and contrasting impacts on pathogen metrics with microplastic consumption resulting in fish maintaining infections for significantly longer and Roundup significantly reducing pathogen burdens. When combined, the two pollutants had a largely additive effect in reducing pathogen burdens. This study is the first to reveal that microplastic and Roundup individually and interactively impact host-pathogen dynamics and can prove fatal to fish.

Keywords: Fish welfare; Herbicide; Host-pathogen interactions; Microplastic; Multi-stressor; Pollutant.

PubMed Disclaimer

LinkOut - more resources