Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting
- PMID: 35132086
- PMCID: PMC8821563
- DOI: 10.1038/s41467-022-28415-4
Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting
Abstract
Interface engineering is a proven strategy to improve the efficiency of thin film semiconductor based solar energy conversion devices. Ta3N5 thin film photoanode is a promising candidate for photoelectrochemical (PEC) water splitting. Yet, a concerted effort to engineer both the bottom and top interfaces of Ta3N5 thin film photoanode is still lacking. Here, we employ n-type In:GaN and p-type Mg:GaN to modify the bottom and top interfaces of Ta3N5 thin film photoanode, respectively. The obtained In:GaN/Ta3N5/Mg:GaN heterojunction photoanode shows enhanced bulk carrier separation capability and better injection efficiency at photoanode/electrolyte interface, which lead to a record-high applied bias photon-to-current efficiency of 3.46% for Ta3N5-based photoanode. Furthermore, the roles of the In:GaN and Mg:GaN layers are distinguished through mechanistic studies. While the In:GaN layer contributes mainly to the enhanced bulk charge separation efficiency, the Mg:GaN layer improves the surface charge inject efficiency. This work demonstrates the crucial role of proper interface engineering for thin film-based photoanode in achieving efficient PEC water splitting.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
Nanostructured TaON/Ta3N5 as a highly efficient type-II heterojunction photoanode for photoelectrochemical water splitting.Dalton Trans. 2018 Jul 10;47(27):8949-8955. doi: 10.1039/c8dt01219a. Dalton Trans. 2018. PMID: 29922786
-
Decoupling light absorption and carrier transport via heterogeneous doping in Ta3N5 thin film photoanode.Nat Commun. 2022 Dec 15;13(1):7769. doi: 10.1038/s41467-022-35538-1. Nat Commun. 2022. PMID: 36522326 Free PMC article.
-
Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance.J Chem Phys. 2020 Jul 14;153(2):024705. doi: 10.1063/5.0012873. J Chem Phys. 2020. PMID: 32668911
-
Interface engineering for photoelectrochemical oxygen evolution reaction.Chem Soc Rev. 2025 Feb 3;54(3):1268-1317. doi: 10.1039/d4cs00309h. Chem Soc Rev. 2025. PMID: 39679444 Review.
-
Engineering Nanostructure-Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation.Adv Mater. 2021 Apr;33(17):e2005389. doi: 10.1002/adma.202005389. Epub 2021 Mar 17. Adv Mater. 2021. PMID: 33733537 Review.
Cited by
-
Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid.Nat Commun. 2024 Sep 17;15(1):8155. doi: 10.1038/s41467-024-52161-4. Nat Commun. 2024. PMID: 39289360 Free PMC article.
-
Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework.Nat Commun. 2023 Apr 29;14(1):2473. doi: 10.1038/s41467-023-37545-2. Nat Commun. 2023. PMID: 37120625 Free PMC article.
-
Addressing the stability challenge of photo(electro)catalysts towards solar water splitting.Chem Sci. 2023 Feb 24;14(13):3415-3427. doi: 10.1039/d2sc06981d. eCollection 2023 Mar 29. Chem Sci. 2023. PMID: 37006692 Free PMC article. Review.
-
Solar-driven selective conversion of millimolar dissolved carbon to fuels with molecular flux generation.Nat Commun. 2025 Feb 12;16(1):1558. doi: 10.1038/s41467-025-56106-3. Nat Commun. 2025. PMID: 39939589 Free PMC article.
-
Nanoscale Cross-Sectional Characterization of Thin Layers in Material Assemblies.Nanomaterials (Basel). 2025 May 30;15(11):840. doi: 10.3390/nano15110840. Nanomaterials (Basel). 2025. PMID: 40497888 Free PMC article. Review.
References
-
- Hu S, et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science. 2014;344:1005–1009. - PubMed
-
- Takata T, et al. Photocatalytic water splitting with quantum efficiency of almost unity. Nature. 2020;581:411–414. - PubMed
-
- Wang Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1% Nat. Mater. 2016;15:611–615. - PubMed
-
- Nishiyama H, et al. Photocatalytic solar hydrogen production from water on a 100 m2-scale. Nature. 2021;598:304–307. - PubMed
-
- Lewis NS. Toward cost-effective solar energy use. Science. 2007;315:798–801. - PubMed
Grants and funding
- ARPChem/New Energy and Industrial Technology Development Organization (NEDO)
- ARPChem/New Energy and Industrial Technology Development Organization (NEDO)
- ARPChem/New Energy and Industrial Technology Development Organization (NEDO)
- JPMXP09-A-20-UT-0004/Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP09-A-20-UT-0004/Ministry of Education, Culture, Sports, Science and Technology (MEXT)
LinkOut - more resources
Full Text Sources