High Prevalence of blaCTX-M in Fecal Commensal Escherichia coli from Healthy Children
- PMID: 35132833
- PMCID: PMC8987167
- DOI: 10.3947/ic.2021.0102
High Prevalence of blaCTX-M in Fecal Commensal Escherichia coli from Healthy Children
Abstract
Background: Antibiotic-resistant Escherichia coli can colonize the intestinal tract of healthy children, causing concern when antibiotic resistance is related to the presence of transferable mechanisms, such as extended-spectrum β-lactamases (ESBLs).
Materials and methods: Fecal samples from 41 healthy children from two villages of rural Peru were cultured on ceftriaxone-disks. ESBL production was confirmed with double disk synergy. In all ESBL-produced isolates, antibiotic susceptibility to 12 antibacterial agents was established by disk diffusion, while clonal relationships were determined by repetitive extragenic palindromic-polymerase chain reaction (REP-PCR). Presence of ST131 was determined using PCR.
Results: Ceftriaxone-resistant microorganisms were recovered from 39 samples belonging to 22 out of 41 children (53.7%). Of these, 80 ceftriaxone-resistant and two ceftriaxone-intermediate E. coli from inside ceftriaxone-halos were confirmed as ESBL-producers. All isolates were multidrug-resistant. In 79/80 (98.8%) ceftriaxone-resistant isolates, the presence of blaCTX-M was detected alone (58 isolates, or together with other β-lactamase (blaTEM, 17 isolates; blaOXA-1-like, 3 isolates; blaTEM + blaOXA-1-like, 1 isolate), while in one isolate no such ESBL was identified. The two ceftriaxone-intermediate isolates recovered from the same sample, carried a blaTEM and blaSHV respectively. Thirty-four different clones were identified, with 4 clones being recovered from different samples from the same child. Twelve clones were disseminated among different children, including 5 clones disseminated between both villages. Two clones, accounting for 3 isolates and both recovered from the same children, belonged to E. coli ST131.
Conclusion: This study demonstrates high prevalence of ESBL-carriers among healthy children living in a rural area of Peru, stressing the need for continuous surveillance and search for public health control measures.
Keywords: Antibiotic-resistance; Commensal; Escherichia coli; Extended-spectrum β-lactamases; Healthy carriers.
Copyright © 2022 by The Korean Society of Infectious Diseases, Korean Society for Antimicrobial Therapy, and The Korean Society for AIDS.
Conflict of interest statement
No conflict of interest
References
-
- Bartoloni A, Pallecchi L, Benedetti M, Fernandez C, Vallejos Y, Guzman E, Villagran AL, Mantella A, Lucchetti C, Bartalesi F, Strohmeyer M, Bechini A, Gamboa H, Rodríguez H, Falkenberg T, Kronvall G, Gotuzzo E, Paradisi F, Rossolini GM. Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg Infect Dis. 2006;12:907–913. - PMC - PubMed
-
- Palma N, Gomes C, Riveros M, García W, Martínez-Puchol S, Ruiz-Roldán L, Mateu J, García C, Jacobs J, Ochoa TJ, Ruiz J. Virulence factors profiles and ESBL production in Escherichia coli causing bacteremia in Peruvian children. Diagn Microbiol Infect Dis. 2016;86:70–75. - PubMed
-
- Pashang R, Yusuf F, Zhao S, Deljoomanesh S, Gilbride KA. Widespread detection of antibiotic-resistant bacteria from natural aquatic environments in southern Ontario. Can J Microbiol. 2019;65:322–331. - PubMed
