Facial landmark-guided surface matching for image-to-patient registration with an RGB-D camera
- PMID: 35133715
- DOI: 10.1002/rcs.2373
Facial landmark-guided surface matching for image-to-patient registration with an RGB-D camera
Abstract
Background: Fiducial marker-based image-to-patient registration is the most common way in image-guided neurosurgery, which is labour-intensive, time consuming, invasive and error prone.
Methods: We proposed a method of facial landmark-guided surface matching for image-to-patient registration using an RGB-D camera. Five facial landmarks are localised from preoperative magnetic resonance (MR) images using deep learning and RGB image using Adaboost with multi-scale block local binary patterns, respectively. The registration of two facial surface point clouds derived from MR images and RGB-D data is initialised by aligning these five landmarks and further refined by weighted iterative closest point algorithm.
Results: Phantom experiment results show the target registration error is less than 3 mm when the distance from the camera to the phantom is less than 1000 mm. The registration takes less than 10 s.
Conclusions: The proposed method is comparable to the state-of-the-arts in terms of the accuracy yet more time-saving and non-invasive.
Keywords: RGB-D camera; deep learning; facial landmark; image-to-patient registration; surface matching.
© 2022 John Wiley & Sons Ltd.
Similar articles
-
A projected landmark method for reduction of registration error in image-guided surgery systems.Int J Comput Assist Radiol Surg. 2015 May;10(5):541-54. doi: 10.1007/s11548-014-1075-z. Epub 2014 May 28. Int J Comput Assist Radiol Surg. 2015. PMID: 24866060
-
Intraoperative fiducial-less patient registration using volumetric 3D ultrasound: a prospective series of 32 neurosurgical cases.J Neurosurg. 2015 Sep;123(3):721-31. doi: 10.3171/2014.12.JNS141321. Epub 2015 Jul 3. J Neurosurg. 2015. PMID: 26140481 Free PMC article.
-
New Protocol for Skin Landmark Registration in Image-Guided Neurosurgery: Technical Note.Neurosurgery. 2015 Sep;11 Suppl 3:376-80; discussion 380-1. doi: 10.1227/NEU.0000000000000868. Neurosurgery. 2015. PMID: 26120798
-
Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods.J Neurosurg. 2007 Jun;106(6):1012-6. doi: 10.3171/jns.2007.106.6.1012. J Neurosurg. 2007. PMID: 17564173
-
Multimodal 3D ultrasound and CT in image-guided spinal surgery: public database and new registration algorithms.Int J Comput Assist Radiol Surg. 2021 Apr;16(4):555-565. doi: 10.1007/s11548-021-02323-2. Epub 2021 Mar 8. Int J Comput Assist Radiol Surg. 2021. PMID: 33683544 Review.
Cited by
-
Image-to-Patient Registration in Computer-Assisted Surgery of Head and Neck: State-of-the-Art, Perspectives, and Challenges.J Clin Med. 2023 Aug 19;12(16):5398. doi: 10.3390/jcm12165398. J Clin Med. 2023. PMID: 37629441 Free PMC article. Review.
-
Use of Neuronavigation and Augmented Reality in Transsphenoidal Pituitary Adenoma Surgery.J Clin Med. 2022 Sep 23;11(19):5590. doi: 10.3390/jcm11195590. J Clin Med. 2022. PMID: 36233457 Free PMC article.
-
Augmented Reality in Extratemporal Lobe Epilepsy Surgery.J Clin Med. 2024 Sep 25;13(19):5692. doi: 10.3390/jcm13195692. J Clin Med. 2024. PMID: 39407752 Free PMC article.
-
Deep learning in neurosurgery: a systematic literature review with a structured analysis of applications across subspecialties.Front Neurol. 2025 Apr 16;16:1532398. doi: 10.3389/fneur.2025.1532398. eCollection 2025. Front Neurol. 2025. PMID: 40308224 Free PMC article.
References
REFERENCES
-
- Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL. Optical surgical navigation for precision in tumor resections. Molecular Imaging Biol. 2017;19(3):357-362.
-
- Dorward NL, Alberti O, Palmer JD, Kitchen ND, Thomas DG. Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. J Neurosurgery. 1999;90(1):160-168.
-
- Sukegawa S, Kanno T, Furuki Y. Application of computer-assisted navigation systems in oral and maxillofacial surgery. Japanese Dental Sci Rev. 2018;54(3):139-149.
-
- Esfandiari H, Weidert S, Kövesházi I, Anglin C, Street J, Hodgson AJ. Deep learning-based x-ray inpainting for improving spinal 2D-3D registration. Int J Med Robot Comput Assist Surg. 2021;17(2):e2228.
-
- Gueziri HE, Drouin S, Yan CX, Collins DL. Toward real-time rigid registration of intra-operative ultrasound with preoperative ct images for lumbar spinal fusion surgery. Int J Comput Assist Radiol Surg. 2019;14(11):1933-1943.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources