Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec;59(4):387-412.
doi: 10.17113/ftb.59.04.21.7300.

Biogas Production Systems and Upgrading Technologies: A Review

Affiliations
Review

Biogas Production Systems and Upgrading Technologies: A Review

Martina Andlar et al. Food Technol Biotechnol. 2021 Dec.

Abstract

The underutilized biomass and different organic waste streams are nowadays in the focus of research for renewable energy production due to the effusive use of fossil fuels and greenhouse gas emission. In addition, one of the major environmental problems is also a constant increase of the number of organic waste streams. In a lot of countries, sustainable waste management, including waste prevention and reduction, has become a priority as a means to reduce pollution and greenhouse gas emission. Application of biogas technology is one of the promising methods to provide solutions for both actual energy-related and environmental problems. This review aims to present conventional and novel biogas production systems, as well as purification and upgrading technologies, nowadays applicable on a large scale, with a special focus on the CO2 and H2S removal. It also gives an overview of feedstock and the parameters important for biogas production, together with digestate utilization and application of molecular biology in order to improve the biogas production.

Keywords: anaerobic digestion; biogas production; biogas purification and upgrading technologies; different anaerobic bioreactor systems; digestate.

PubMed Disclaimer

Conflict of interest statement

CONFLICT OF INTEREST The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Different bioreactors for anaerobic digestion: a) anaerobic sequencing batch reactor (ASBR), b) continuous stirred tank reactor (CSTR) in a two-stage system, c) anaerobic plug-flow reactor (APFR), d) bioreactor with sludge retention system, e) up-flow anaerobic sludge blanket (UASB) bioreactor, f) up-flow anaerobic solid-state (UASS) bioreactor, g) anaerobic baffled reactor (ABR), h) anaerobic fluidized bed reactor (AFBR), i) horizontal-flow anaerobic immobilized biomass (HAIB) bioreactor, and j) anaerobic membrane bioreactor
Fig. S1
Fig. S1
Microbial and metabolic characteristics of biogas production: a) the main phases of anaerobic digestion, and b) metabolic pathways of methane synthesis in Methanosarcina barkeri CM1. HSCoA=coenzyme A, HSCoB=coenzyme B, HSCoM=coenzyme M, MF=methanofuran, H4MPT=tetrahydromethanopterin, CODH/ACS=carbon monoxide dehydrogenase/acetyl-CoA synthase, ack=acetate kinase, Fwd/Fmd=formyl-methanofuran dehydrogenase/formyl-methanofuran-H4MPT formyl transferase, Fd=ferredoxin, Ftr=formyltransferase, Mch=methanopterin cyclohydrolase, Mtd=F420-dependent methenyle-H4MPT-dehydrogenase, Mer=methylene-H4MPT-reductase, Mtr=methyltransferase, Mcr=methyl-coenzyme M reductase (3)

References

    1. Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev. 2015;45:540–55. 10.1016/j.rser.2015.02.032 - DOI
    1. Bacenetti J, Negri M, Fiala M, González-García S. Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process. Sci Total Environ. 2013;463-464:541–51. 10.1016/j.scitotenv.2013.06.058 - DOI - PubMed
    1. Lambie SC, Kelly WJ, Leahy SC, Li D, Reilly K, McAllister TA, et al. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand Genomic Sci. 2015;10:57. 10.1186/s40793-015-0038-5 - DOI - PMC - PubMed
    1. Surendra K, Takara D, Hashimoto AG, Khanal SK. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew Sustain Energy Rev. 2014;31:846–59. 10.1016/j.rser.2013.12.015 - DOI
    1. Crolla A, Kinsley C, Pattey E. 13-Land application of digestate. In: Wellinger A, Murphy J, Baxter D. editors. The biogas handbook: Science, production and applications. Oxford, UK: Woodhead Publishing; 2013. pp. 302-25.

LinkOut - more resources