Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 10;23(2):bbac003.
doi: 10.1093/bib/bbac003.

Anc2vec: embedding gene ontology terms by preserving ancestors relationships

Affiliations

Anc2vec: embedding gene ontology terms by preserving ancestors relationships

Alejandro A Edera et al. Brief Bioinform. .

Abstract

The gene ontology (GO) provides a hierarchical structure with a controlled vocabulary composed of terms describing functions and localization of gene products. Recent works propose vector representations, also known as embeddings, of GO terms that capture meaningful information about them. Significant performance improvements have been observed when these representations are used on diverse downstream tasks, such as the measurement of semantic similarity between GO terms and functional similarity between proteins. Despite the success shown by these approaches, existing embeddings of GO terms still fail to capture crucial structural features of the GO. Here, we present anc2vec, a novel protocol based on neural networks for constructing vector representations of GO terms by preserving three important ontological features: its ontological uniqueness, ancestors hierarchy and sub-ontology membership. The advantages of using anc2vec are demonstrated by systematic experiments on diverse tasks: visualization, sub-ontology prediction, inference of structurally related terms, retrieval of terms from aggregated embeddings, and prediction of protein-protein interactions. In these tasks, experimental results show that the performance of anc2vec representations is better than those of recent approaches. This demonstrates that higher performances on diverse tasks can be achieved by embeddings when the structure of the GO is better represented. Full source code and data are available at https://github.com/sinc-lab/anc2vec.

Keywords: gene ontology; neural networks; protein–protein interactions; semantic similarity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources