Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
- PMID: 35137036
- PMCID: PMC8862043
- DOI: 10.1093/femsyr/foac007
Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha
Abstract
While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD+ redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD+-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.
Keywords: Ogataea parapolymorpha; Custers effect; anaerobic growth; genome sequence; glycerol metabolism; thermotolerance.
© The Author(s) 2022. Published by Oxford University Press on behalf of FEMS.
Figures




Similar articles
-
Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of Ogataea parapolymorpha.Appl Environ Microbiol. 2020 Jul 20;86(15):e00678-20. doi: 10.1128/AEM.00678-20. Print 2020 Jul 20. Appl Environ Microbiol. 2020. PMID: 32471916 Free PMC article.
-
Microaerobic glycerol formation in Saccharomyces cerevisiae.Yeast. 2000 Dec;16(16):1483-95. doi: 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K. Yeast. 2000. PMID: 11113971
-
Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.Yeast. 2000 Mar 30;16(5):463-74. doi: 10.1002/(SICI)1097-0061(20000330)16:5<463::AID-YEA535>3.0.CO;2-3. Yeast. 2000. PMID: 10705374
-
Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.FEMS Microbiol Rev. 2001 Jan;25(1):15-37. doi: 10.1111/j.1574-6976.2001.tb00570.x. FEMS Microbiol Rev. 2001. PMID: 11152939 Review.
-
Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae.Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):73-81. doi: 10.1023/b:mcbi.0000009888.79484.fd. Mol Cell Biochem. 2004. PMID: 14977171 Review.
Cited by
-
Optimization of energy production and central carbon metabolism in a non-respiring eukaryote.Curr Biol. 2023 Jun 5;33(11):2175-2186.e5. doi: 10.1016/j.cub.2023.04.046. Epub 2023 May 9. Curr Biol. 2023. PMID: 37164017 Free PMC article.
References
-
- Albertyn J, van Tonder A, Prior BA. Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. FEBS Lett. 1992;308:130–2. - PubMed
-
- Althuri A, Chintagunta AD, Sherpa KCet al. . Simultaneous saccharification and fermentation of lignocellulosic biomass. In: Kumar S, Sani R (eds.). Biorefining of Biomass to Biofuels: Opportunities and Perception. Cham: Springer, 2018, 265–85.
-
- Alvira P, Tomás-Pejó E, Ballesteros Met al. . Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–61. - PubMed
-
- Andreasen AA, Stier TJB.. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Comp Physiol. 1953;41:23–6. - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Molecular Biology Databases