Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jan 14;25(1):16-21.
doi: 10.1021/bi00349a003.

Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA

Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA

C Hountondji et al. Biochemistry. .

Abstract

Covalent modification of Escherichia coli tyrosyl-tRNA synthetase (TyrRS) by the 2',3'-dialdehyde derivative of tRNATyr (tRNAox) resulted in a time-dependent inactivation of both ATP-PPi exchange and tRNA aminoacylation activities of the enzyme. In parallel with the inactivation, covalent incorporation of approximately 1 mol of [14C]tRNATyrox/mol of the dimeric synthetase occurred. Intact tRNATyr protected the enzyme against inactivation by the tRNA dialdehyde. Treatment of the TyrRS-[14C]tRNATyr covalent complex with alpha-chymotrypsin produced two labeled peptides (A and B) that were isolated and identified by sequence analysis. Peptides A and B are adjacent and together span residues 227-244 in the primary structure of the enzyme. The three lysine residues in this sequence (lysines-229, -234, and -237) are labeled in a mutually exclusive fashion, with lysine-234 being the most reactive. By analogy with the known three-dimensional structure of the homologous tyrosyl-tRNA synthetase from Bacillus stearothermophilus, these lysines should be part of the C-terminal domain which is presumed to bind the cognate tRNA. Interestingly, the labeled TyrRS structure showed significant similarities to the structure around the lysine residue of E. coli methionyl-tRNA synthetase which is the most reactive toward tRNAMetf(ox) (lysine-335) [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180].

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources