Multi-attribute characterization of pneumococcal conjugate vaccine by Size-exclusion chromatography coupled with UV-MALS-RI detections
- PMID: 35140014
- DOI: 10.1016/j.vaccine.2022.01.042
Multi-attribute characterization of pneumococcal conjugate vaccine by Size-exclusion chromatography coupled with UV-MALS-RI detections
Abstract
Streptococcus pneumoniae bacterial infection can cause serious diseases. Among more than 90 known streptococcus pneumoniae serotypes, more than 30 can cause invasive pneumococcal diseases that could lead to morbidity and mortality. Initially, a 23-valent polysaccharide vaccines (PPSV) PNEUMOVAX®23, was developed to generate an antigen-specific immune response and prevent diseases caused by these pneumoniae serotypes. Later, pneumococcal conjugate vaccines (PCV), such as PREVNAR® and VAXNEUVANCE™ have been developed to offer a more robust immune response in the pediatric population. In our effort to develop novel pneumococcal conjugate vaccines, each serotype of pneumococcal polysaccharide (Ps) is conjugated to a detoxified diphtheria toxin carrier protein CRM197 to form a monovalent conjugate (MVC). MVCs from multiple serotypes are formulated with vaccine adjuvant to form a multi-valent vaccine drug product. During the product development, critical attributes including conjugate molecular weight (Mw), protein and polysaccharide concentration, have been used to monitor process and product quality. To measure these attributes, a size-exclusion chromatography (SEC) method was developed with a series of in-line detectors including UV, multi-angle light scattering (MALS) and refractive index (RI). This SEC-UV-MALS-RI method is employed to characterize and monitor process intermediates and product during process development and for product release and stability testing. With this, we have expanded the multi-attribute SEC method to a 15-valent pneumococcal conjugate vaccine.
Keywords: CRM197 protein; Inline dynamic light scattering; Multi-angle light scattering; Pneumococcal conjugate vaccine; Size-exclusion chromatography; Viscometer.
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical