Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 24;126(7):1504-1519.
doi: 10.1021/acs.jpcb.1c01184. Epub 2022 Feb 10.

Membrane Composition and Raf[CRD]-Membrane Attachment Are Driving Forces for K-Ras4B Dimer Stability

Affiliations

Membrane Composition and Raf[CRD]-Membrane Attachment Are Driving Forces for K-Ras4B Dimer Stability

Ioannis Andreadelis et al. J Phys Chem B. .

Abstract

Ras proteins are membrane-anchored GTPases that regulate key cellular signaling networks. It has been recently shown that different anionic lipid types can affect the properties of Ras in terms of dimerization/clustering on the cell membrane. To understand the effects of anionic lipids on key spatiotemporal properties of dimeric K-Ras4B, we perform all-atom molecular dynamics simulations of the dimer K-Ras4B in the presence and absence of Raf[RBD/CRD] effectors on two model anionic lipid membranes: one containing 78% mol DOPC, 20% mol DOPS, and 2% mol PIP2 and another one with enhanced concentration of anionic lipids containing 50% mol DOPC, 40% mol DOPS, and 10% mol PIP2. Analysis of our results unveils the orientational space of dimeric K-Ras4B and shows that the stability of the dimer is enhanced on the membrane containing a high concentration of anionic lipids in the absence of Raf effectors. This enhanced stability is also observed in the presence of Raf[RBD/CRD] effectors although it is not influenced by the concentration of anionic lipids in the membrane, but rather on the ability of Raf[CRD] to anchor to the membrane. We generate dominant K-Ras4B conformations by Markov state modeling and yield the population of states according to the K-Ras4B orientation on the membrane. For the membrane containing anionic lipids, we observe correlations between the diffusion of K-Ras4B and PIP2 and anchoring of anionic lipids to the Raf[CRD] domain. We conclude that the presence of effectors with the Raf[CRD] domain anchoring on the membrane as well as the membrane composition both influence the conformational stability of the K-Ras4B dimer, enabling the preservation of crucial interface interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources