Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022:31:1911-1923.
doi: 10.1109/TIP.2022.3149237. Epub 2022 Feb 16.

Semantic Context-Aware Image Style Transfer

Semantic Context-Aware Image Style Transfer

Yi-Sheng Liao et al. IEEE Trans Image Process. 2022.

Abstract

To provide semantic image style transfer results which are consistent with human perception, transferring styles of semantic regions of the style image to their corresponding semantic regions of the content image is necessary. However, when the object categories between the content and style images are not the same, it is difficult to match semantic regions between two images for semantic image style transfer. To solve the semantic matching problem and guide the semantic image style transfer based on matched regions, we propose a novel semantic context-aware image style transfer method by performing semantic context matching followed by a hierarchical local-to-global network architecture. The semantic context matching aims to obtain the corresponding regions between the content and style images by using context correlations of different object categories. Based on the matching results, we retrieve semantic context pairs where each pair is composed of two semantically matched regions from the content and style images. To achieve semantic context-aware style transfer, a hierarchical local-to-global network architecture, which contains two sub-networks including the local context network and the global context network, is proposed. The former focuses on style transfer for each semantic context pair from the style image to the content image, and generates a local style transfer image storing the detailed style feature representations for corresponding semantic regions. The latter aims to derive the stylized image by considering the content, the style, and the intermediate local style transfer images, so that inconsistency between different corresponding semantic regions can be addressed and solved. The experimental results show that the stylized results using our method are more consistent with human perception compared with the state-of-the-art methods.

PubMed Disclaimer

LinkOut - more resources