Fusion of sequential visits and medical ontology for mortality prediction
- PMID: 35144001
- DOI: 10.1016/j.jbi.2022.104012
Fusion of sequential visits and medical ontology for mortality prediction
Abstract
The goal of mortality prediction task is to predict the future death risk of patients according to their previous Electronic Healthcare Records (EHR). The main challenge of mortality prediction is how to design an accurate and robust predictive model with sequential, multivariate, sparse and irregular EHR data. In addition, the performance of model may be affected by lack of sufficient information of some patients with rare diseases in EHRs. To address these challenges, we propose a model to fuse Sequential visits and Medical Ontology to predict patients' death risk. SeMO not only learns reasonable embeddings for medical concepts from sequential and irregular visits, but also exploits medical ontology to improve the prediction performance. With integration of multivariate features, SeMO learns robust representations of medical codes, mitigating data insufficiency and insightful sequential dependencies among patient's visits. Experimental results on real world datasets prove that the proposed SeMO improves the prediction performance compared with the baseline approaches. Our model achieves an precision of up to 0.975. Compared with RNN, the precision has been improved up to 2.204%.
Keywords: Deep learning; Electronic healthcare records; ICU mortality prediction; Medical ontology.
Copyright © 2022 Elsevier Inc. All rights reserved.
Similar articles
-
Incorporating medical code descriptions for diagnosis prediction in healthcare.BMC Med Inform Decis Mak. 2019 Dec 19;19(Suppl 6):267. doi: 10.1186/s12911-019-0961-2. BMC Med Inform Decis Mak. 2019. PMID: 31856806 Free PMC article.
-
Integrating Multimodal Electronic Health Records for Diagnosis Prediction.AMIA Annu Symp Proc. 2022 Feb 21;2021:726-735. eCollection 2021. AMIA Annu Symp Proc. 2022. PMID: 35309013 Free PMC article.
-
Representation learning for clinical time series prediction tasks in electronic health records.BMC Med Inform Decis Mak. 2019 Dec 17;19(Suppl 8):259. doi: 10.1186/s12911-019-0985-7. BMC Med Inform Decis Mak. 2019. PMID: 31842854 Free PMC article.
-
TA-RNN: an attention-based time-aware recurrent neural network architecture for electronic health records.Bioinformatics. 2024 Jun 28;40(Suppl 1):i169-i179. doi: 10.1093/bioinformatics/btae264. Bioinformatics. 2024. PMID: 38940180 Free PMC article.
-
Electronic Health Records: Then, Now, and in the Future.Yearb Med Inform. 2016 May 20;Suppl 1(Suppl 1):S48-61. doi: 10.15265/IYS-2016-s006. Yearb Med Inform. 2016. PMID: 27199197 Free PMC article. Review.
Cited by
-
Predictive modeling of biomedical temporal data in healthcare applications: review and future directions.Front Physiol. 2024 Oct 15;15:1386760. doi: 10.3389/fphys.2024.1386760. eCollection 2024. Front Physiol. 2024. PMID: 39473609 Free PMC article. Review.
-
Predicting heart failure in-hospital mortality by integrating longitudinal and category data in electronic health records.Med Biol Eng Comput. 2023 Jul;61(7):1857-1873. doi: 10.1007/s11517-023-02816-z. Epub 2023 Mar 24. Med Biol Eng Comput. 2023. PMID: 36959414
-
On the evaluation of synthetic longitudinal electronic health records.BMC Med Res Methodol. 2024 Aug 14;24(1):181. doi: 10.1186/s12874-024-02304-4. BMC Med Res Methodol. 2024. PMID: 39143466 Free PMC article.
-
Enhancing Patient Outcome Prediction Through Deep Learning With Sequential Diagnosis Codes From Structured Electronic Health Record Data: Systematic Review.J Med Internet Res. 2025 Mar 18;27:e57358. doi: 10.2196/57358. J Med Internet Res. 2025. PMID: 40100249 Free PMC article.
-
Deep multi-modal intermediate fusion of clinical record and time series data in mortality prediction.Front Mol Biosci. 2023 Mar 8;10:1136071. doi: 10.3389/fmolb.2023.1136071. eCollection 2023. Front Mol Biosci. 2023. Retraction in: Front Mol Biosci. 2025 Jun 13;12:1640945. doi: 10.3389/fmolb.2025.1640945. PMID: 36968273 Free PMC article. Retracted.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources