GSK2606414 attenuates PERK/p-eIF2α/ATF4/CHOP axis and augments mitochondrial function to mitigate high glucose induced neurotoxicity in N2A cells
- PMID: 35146419
- PMCID: PMC8819026
- DOI: 10.1016/j.crphar.2022.100087
GSK2606414 attenuates PERK/p-eIF2α/ATF4/CHOP axis and augments mitochondrial function to mitigate high glucose induced neurotoxicity in N2A cells
Abstract
Neuronal dysfunction and subsequent apoptosis under high glucose conditions during diabetes contribute majorly to the manifestation of diabetic peripheral neuropathy (DPN). PERK (protein kinase RNA (PKR)-like ER kinase) one among the three canonical arms of unfolded protein response (UPR), is believed to play a crucial role in determining the cell fate during endoplasmic reticulum stress (ERS/ER stress) conditions. We evaluated the role of PERK inhibitor GSK2606414 in high glucose (30 mM) treated neuroblastoma (N2A) cells. High glucose resulted in disruption of ER proteostasis by activation of UPR which is evident through increased (p < 0.001) expression of GRP78, p-PERK, p-eIF2α, ATF-4 and CHOP when compared to normal cells. It is accompanied with enhanced GRP78 localization in Endoplasmic Reticulum (ER) lumen evident from ER labeling Immunofluorescence (IF) staining. PERK activation resulted in altered mitochondrial function evident by increased mitochondrial superoxide production and compromised mitochondrial homeostasis with decrease in Mfn-2 levels. Additionally, ER stress induced neuronal apoptosis was attenuated by GSK2606414 treatment via inhibiting the PERK-eIF2α-ATF4-CHOP axis that not only curtailed the levels of apoptotic proteins like Bax and caspase 3 but also elevated the levels of anti-apoptotic Bcl-2. Collectively, our findings revealed the neuroprotective potential of GSK2606414 against high glucose induced neurotoxicity in N2A cells.
Keywords: ER stress; GSK2606414; High glucose; Mitochondrial function; PERK.
© 2022 The Authors.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures







References
-
- Arruri V., Komirishetty P., Areti A., Dungavath S.K.N., Kumar A. Nrf2 and NF-κB modulation by Plumbagin attenuates functional, behavioural and biochemical deficits in rat model of neuropathic pain. Pharmacol. Rep. 2017;69:625–632. - PubMed
-
- Arruri V.K., Gundu C., Kalvala A.K., Sherkhane B., Khatri D.K., Singh S.B. Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr. Neurosci. 2021:1–16. doi: 10.1080/1028415X.2021.1892985. - DOI - PubMed
-
- Axten J.M., Medina J.s.R., Feng Y., Shu A., Romeril S.P., Grant S.W., Li W.H.H., Heerding D.A., Minthorn E., Mencken T. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl) phenyl] acetyl}-2, 3-dihydro-1 H-indol-5-yl)-7 H-pyrrolo [2, 3-d] pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) J. Med. Chem. 2012;55:7193–7207. - PubMed
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous