Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 23;14(7):8655-8663.
doi: 10.1021/acsami.1c23431. Epub 2022 Feb 11.

Deep Elastic Strain Engineering of 2D Materials and Their Twisted Bilayers

Affiliations

Deep Elastic Strain Engineering of 2D Materials and Their Twisted Bilayers

Ying Han et al. ACS Appl Mater Interfaces. .

Abstract

Conventionally, tuning materials' properties can be done through strategies such as alloying, doping, defect engineering, and phase engineering, while in fact mechanical straining can be another effective approach. In particular, elastic strain engineering (ESE), unlike conventional strain engineering mainly based on epitaxial growth, allows for continuous and reversible modulation of material properties by mechanical loading/unloading. The exceptional intrinsic mechanical properties (including elasticity and strength) of two-dimensional (2D) materials make them naturally attractive candidates for potential ESE applications. Here, we demonstrated that using the strain effect to modulate the physical and chemical properties toward novel functional device applications, which could be a general strategy for various 2D materials and their heterostructures. We then show how ultralarge, uniform elastic strain in free-standing 2D monolayers can permit deep elastic strain engineering (DESE), which can result in fundamentally changed electronic and optoelectronic properties for unconventional device applications. In addition to monolayers and van der Waals (vdW) heterostructures, we propose that DESE can be also applied to twisted bilayer graphene and other emerging twisted vdW structures, allowing for unprecedented functional 2D material applications.

Keywords: 2D materials; elastic strain engineering; nanomechanics; nanotechnology; twistronics.

PubMed Disclaimer

LinkOut - more resources