Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 14;23(3):1366-1375.
doi: 10.1021/acs.biomac.1c01584. Epub 2022 Feb 11.

Tough Photo-Cross-Linked PCL-Hydroxyapatite Composites for Bone Tissue Engineering

Affiliations

Tough Photo-Cross-Linked PCL-Hydroxyapatite Composites for Bone Tissue Engineering

Quinten Thijssen et al. Biomacromolecules. .

Abstract

Acrylate-based photo-cross-linked poly(ε-caprolactone) (PCL) tends to show low elongation and strength. Incorporation of osteo-inductive hydroxyapatite (HAp) further enhances this effect, which limits its applicability in bone tissue engineering. To overcome this, the thiol-ene click reaction is introduced for the first time in order to photo-cross-link PCL composites with 0, 10, 20, and 30 wt % HAp nanoparticles. It is demonstrated that the elongation at break and ultimate strength increase 10- and 2-fold, respectively, when the photopolymerization mechanism is shifted from a radical chain-growth (i.e., acrylate cross-linking) toward a radical step-growth polymerization (i.e., thiol-ene cross-linking). Additionally, it is illustrated that osteoblasts can attach to and proliferate on the surface of the photo-cross-linked PCL-HAp composites. Finally, the incorporation of HAp nanoparticles is shown to reduce the ALP activity of osteoblasts. Overall, thiol-ene cross-linked PCL-HAp composites can be considered as promising potential materials for bone tissue engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources