Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 11;255(3):64.
doi: 10.1007/s00425-022-03849-8.

Functional characterization of tyrosine decarboxylase genes that contribute to acteoside biosynthesis in Rehmannia glutinosa

Affiliations

Functional characterization of tyrosine decarboxylase genes that contribute to acteoside biosynthesis in Rehmannia glutinosa

Yan Hui Yang et al. Planta. .

Abstract

The RgTyDCs possess typical decarboxylase functional activity in vitro and in vivo and participate in acteoside biosynthesis in R. glutinosa, positively controlling its production via activated acteoside/tyrosine-derived pathways. Acteoside is an important ingredient in Rehmannia glutinosa and an active natural component that contributes to human health. Tyrosine decarboxylase (TyDC) is thought to play an important role in acteoside biosynthesis. Several plant TyDC family genes have been functionally characterized and shown to play roles in some bioactive metabolites' biosynthesis by mediating the decarboxylation of L-tyrosine and L-dihydroxyphenylalanine (L-DOPA); however, one TyDC (named RgTyDC1) in R. glutinosa has been identified to date, but the family genes that contribute to acteoside biosynthesis remain largely characterized. Here, by in silico and experimental analyses, we isolated and identified three RgTyDCs (RgTyDC2 to RgTyDC4) in this species; these genes' sequences showed 50.92-82.55% identity, included highly conserved domains with homologues in other plants, classified into two subsets, and encoded proteins that localized to the cytosol. Enzyme kinetic analyses of RgTyDC2 and RgTyDC4 indicated that they both efficiently catalysed L-tyrosine and L-dopa. The overexpression of RgTyDC2 and RgTyDC4 in R. glutinosa, which was associated with enhanced TyDC activity, significantly increased tyramine and dopamine contents, which was positively correlated with improved acteoside production; moreover, the overexpression of RgTyDCs led to upregulated expression of some other genes-related to acteoside biosynthesis. This result suggested that the overexpression of RgTyDCs can positively activate the molecular networks of acteoside pathways, enhancing the accumulation of tyramine and dopamine, and promoting end-product acteoside biosynthesis. Our findings provide an evidence that RgTyDCs play vital molecular roles in acteoside biosynthesis pathways, contributing to the increase in acteoside yield in R. glutinosa.

Keywords: Acteoside biosynthesis; Enzyme activity; Molecular function; Overexpression; Rehmannia glutinosa; Tyrosine decarboxylase.

PubMed Disclaimer

References

    1. Alipieva K, Korkina L, Orhan IE, Georgiev MI (2014) Verbascoside—a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv 32:1065–1076. https://doi.org/10.1016/j.biotechadv.2014.07.001 - DOI - PubMed
    1. Facchini PJ, De Luca V (1994) Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 269:26684–26690. https://doi.org/10.1016/S0021-9258(18)47073-1 - DOI - PubMed
    1. Facchini PJ, Penzes-Yost C, Samanani N, Kowalchuk B (1998) Expression patterns conferred by tyrosine/dihydroxyphenylalanine decarboxylase promoters from opium poppy are conserved in transgenic tobacco. Plant Physiol 118:69–81. https://doi.org/10.1104/pp.118.1.69 - DOI - PubMed - PMC
    1. Facchini PJ, Huber-Allanach KL, Tari LW (2000) Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54:121–138. https://doi.org/10.1016/S0031-9422(00)00050-9 - DOI - PubMed
    1. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press Inc, Totowa, pp 571–607 - DOI

LinkOut - more resources