Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 11;12(1):2348.
doi: 10.1038/s41598-022-06330-4.

Response of Iranian lizards to future climate change by poleward expansion, southern contraction, and elevation shifts

Affiliations

Response of Iranian lizards to future climate change by poleward expansion, southern contraction, and elevation shifts

Somaye Vaissi. Sci Rep. .

Abstract

This study explores the relationships between recent Iranian lizard species distributions and the observed climate, as well as potential future distributions of species. For this purpose, an ensemble of seven algorithms was used to forecast the distributions of 30 species for the recent and future (2070) based on the averages of 14 global climate models under optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios. Annual precipitation (n = 16) and annual mean temperature (n = 7) were identified as the most important variables in determining the distribution of 76.66% (23 out of 30) of the species. The consensus model predicts that the ranges of 83.33% of species (n = 25) have the potential to expand poleward at higher latitudes while preserving the majority of their recent distributions (except for four species). Furthermore, the ranges of the remaining species (n = 5) will be preserved at higher latitudes. However, they (n = 22) may contract slightly (n = 13) or excessively (n = 9) in the south of their distribution range at lower latitudes. These results indicate that species (N = 19) situated in mountainous areas such as the Zagros, Alborz, and Kopet Dagh may move or maintain their range at higher elevations as a result of future climate change. Finally, this study suggests that 30% of species (n = 9) may be threatened by future climate change and that they should be prioritized in conservation efforts.

PubMed Disclaimer

Conflict of interest statement

The author declares no competing interests.

Figures

Figure 1
Figure 1
Study area. Iran. Map was generated using ArcMap (v 10.8) (https://desktop.arcgis.com).
Figure 2
Figure 2
Recent and future (2070) habitat suitability (%) for 30 lizard species based on the consensus model under optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios in Iran. (AP) Ablepharus pannonicus; (AB) Acanthodactylus blanfordii; (AC) Anguis colchica; (AE) Asaccus elisae, (BT) Bunopus tuberculatus; (CS) Cyrtopodion scabrum; (EP) Eremias persica; (ERS) Eremias strauchi; (EA) Eublepharis angramainyu; (EUS) Eumeces schneideri; (HF) Hemidactylus flaviviridis; (HP) Hemidactylus persicus; (IB) Iranolacerta brandtii; (LN) Laudakia nupta; (MA) Mediodactylus aspratilis; Mediodactylus heterocercum (MEH); (MW) Mesalina watsonana; (MIH) Microgecko helenae; (ML) Microgecko latifi; (MP) Microgecko persicus; (OE) Ophisops elegans; (PC) Paralaudakia caucasia; (PM) Phrynocephalus maculatus; (PP) Phrynocephalus persicus; (PS) Phrynocephalus scutellatus; (TC) Tenuidactylus caspius; (TP) Timon princeps; (TS) Trachylepis septemtaeniata; (TA) Trapelus agilis; (TR) Trapelus ruderatus. Maps were generated using ArcMap (v 10.8) (https://desktop.arcgis.com).
Figure 2
Figure 2
Recent and future (2070) habitat suitability (%) for 30 lizard species based on the consensus model under optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios in Iran. (AP) Ablepharus pannonicus; (AB) Acanthodactylus blanfordii; (AC) Anguis colchica; (AE) Asaccus elisae, (BT) Bunopus tuberculatus; (CS) Cyrtopodion scabrum; (EP) Eremias persica; (ERS) Eremias strauchi; (EA) Eublepharis angramainyu; (EUS) Eumeces schneideri; (HF) Hemidactylus flaviviridis; (HP) Hemidactylus persicus; (IB) Iranolacerta brandtii; (LN) Laudakia nupta; (MA) Mediodactylus aspratilis; Mediodactylus heterocercum (MEH); (MW) Mesalina watsonana; (MIH) Microgecko helenae; (ML) Microgecko latifi; (MP) Microgecko persicus; (OE) Ophisops elegans; (PC) Paralaudakia caucasia; (PM) Phrynocephalus maculatus; (PP) Phrynocephalus persicus; (PS) Phrynocephalus scutellatus; (TC) Tenuidactylus caspius; (TP) Timon princeps; (TS) Trachylepis septemtaeniata; (TA) Trapelus agilis; (TR) Trapelus ruderatus. Maps were generated using ArcMap (v 10.8) (https://desktop.arcgis.com).
Figure 3
Figure 3
Species range change of 30 species of lizards in recently suitable habitats (gain/loss) by 2070 under optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios in Iran. (AP) Ablepharus pannonicus; (AB) Acanthodactylus blanfordii; (AC) Anguis colchica; (AE) Asaccus elisae, (BT) Bunopus tuberculatus; (CS) Cyrtopodion scabrum; (EP) Eremias persica; (ERS) Eremias strauchi; (EA) Eublepharis angramainyu; (EUS) Eumeces schneideri; (HF) Hemidactylus flaviviridis; (HP) Hemidactylus persicus; (IB) Iranolacerta brandtii; (LN) Laudakia nupta; (MA) Mediodactylus aspratilis; Mediodactylus heterocercum (MEH); (MW) Mesalina watsonana; (MIH) Microgecko helenae; (ML) Microgecko latifi; (MP) Microgecko persicus; (OE) Ophisops elegans; (PC) Paralaudakia caucasia; (PM) Phrynocephalus maculatus; (PP) Phrynocephalus persicus; (PS) Phrynocephalus scutellatus; (TC) Tenuidactylus caspius; (TP) Timon princeps; (TS) Trachylepis septemtaeniata; (TA) Trapelus agilis; (TR) Trapelus ruderatus. Maps were generated using R (v 4.2.0) (https://cran.r-project.org).
Figure 3
Figure 3
Species range change of 30 species of lizards in recently suitable habitats (gain/loss) by 2070 under optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios in Iran. (AP) Ablepharus pannonicus; (AB) Acanthodactylus blanfordii; (AC) Anguis colchica; (AE) Asaccus elisae, (BT) Bunopus tuberculatus; (CS) Cyrtopodion scabrum; (EP) Eremias persica; (ERS) Eremias strauchi; (EA) Eublepharis angramainyu; (EUS) Eumeces schneideri; (HF) Hemidactylus flaviviridis; (HP) Hemidactylus persicus; (IB) Iranolacerta brandtii; (LN) Laudakia nupta; (MA) Mediodactylus aspratilis; Mediodactylus heterocercum (MEH); (MW) Mesalina watsonana; (MIH) Microgecko helenae; (ML) Microgecko latifi; (MP) Microgecko persicus; (OE) Ophisops elegans; (PC) Paralaudakia caucasia; (PM) Phrynocephalus maculatus; (PP) Phrynocephalus persicus; (PS) Phrynocephalus scutellatus; (TC) Tenuidactylus caspius; (TP) Timon princeps; (TS) Trachylepis septemtaeniata; (TA) Trapelus agilis; (TR) Trapelus ruderatus. Maps were generated using R (v 4.2.0) (https://cran.r-project.org).

Similar articles

Cited by

References

    1. Araújo MB, Rahbek C. How does climate change affect biodiversity? Science. 2006;80(313):1396–1397. - PubMed
    1. Pereira HM, et al. Scenarios for global biodiversity in the 21st century. Science. 2010;80(330):1496–1501. - PubMed
    1. Walther G-R, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395. - PubMed
    1. McCarty JP. Ecological consequences of recent climate change. Conserv. Biol. 2001;15:320–331.
    1. Root TL, et al. Fingerprints of global warming on wild animals and plants. Nature. 2003;421:57–60. - PubMed