Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986 Jan;29(1):68-79.
doi: 10.1038/ki.1986.9.

Regulation of glutamine metabolism in dog kidney in vivo

Free article
Review

Regulation of glutamine metabolism in dog kidney in vivo

P Vinay et al. Kidney Int. 1986 Jan.
Free article

Abstract

In summary, we propose: that renal ammoniagenesis is regulated both by factors dependent and independent of the acid-base status, the net effect of the ammoniagenic process on the proton balance being directly related to the rate of urinary ammonium excretion; that the renal metabolism of glutamine should not be examined independently of the metabolism of other substrate physiologically taken up by the kidney; that different pathways for glutamine metabolism will change during acid-base disorders of organic or nonorganic origin; that, among the main glutamine utilizing pathways, only the GLDH pathway is influenced directly by the acid-base status; the ammoniagenic transamination pathways is regulated by substrate availability in the kidney; that the lowest ammoniagenic flux in the kidney coincides with the rate of alanine production since alanine appears to derive directly from glutamine. When this pathway is stimulated without concomitant acidosis, most of the ammonia produced is not excreted in urine but released in the renal venous blood: thus, no significant effect on the acid-base balance is produced; that glutamine is metabolized by proximal kidney tubules of acidotic dogs probably through net oxidation; that the quantitative analysis of the metabolic consequence of this process indicates that the rate of ATP turnover at this site may effectively place an upper limit to the rate of glutamine oxidation, and ammonia production by the kidney, and that this limit is nearly reached in chronically acidotic animals.

PubMed Disclaimer

Publication types

LinkOut - more resources