Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Nov;29(11):1661-1671.
doi: 10.1016/j.acra.2022.01.005. Epub 2022 Feb 10.

MRI Texture Analysis for Preoperative Prediction of Lymph Node Metastasis in Patients with Nonsquamous Cell Cervical Carcinoma

Affiliations
Randomized Controlled Trial

MRI Texture Analysis for Preoperative Prediction of Lymph Node Metastasis in Patients with Nonsquamous Cell Cervical Carcinoma

Mei Ling Xiao et al. Acad Radiol. 2022 Nov.

Abstract

Rationale and objectives: To preoperatively predict lymph node metastasis (LNM) in patients with cervical nonsquamous cell carcinoma (non-SCC) based on magnetic resonance imaging (MRI) texture analysis.

Materials and methods: This retrospective study included 104 consecutive patients (mean age of 47.2 ± 11.3 years) with stage IB-IIA cervical non-SCC. According to the ratio of 7:3, 72, and 32 patients were randomly divided into the training and testing cohorts. A total of 272 original features were extracted. In the process of feature selection, features with intraclass correlation coefficients (ICCs) less than 0.8 were eliminated. The Pearson correlation coefficient (PCC) and analysis of variance (ANOVA) were applied to reduce redundancy, overfitting, and selection biases. Further, a support vector machine (SVM) with linear kernel function was applied to select the optimal feature set with a high discrimination power.

Results: The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI (LN status on MRI)-based SVM models yielded an AUC and accuracy of 0.78 and 0.79; 0.79 and 0.69; 0.79 and 0.81 for predicting LNM in the training cohort, and 0.82 and 0.78; 0.82 and 0.69; 0.79 and 0.72 in the testing cohort. The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI + DWI + LNS-MRI-based SVM models performed better than morphologic criteria of LNS-MRI and yield similar discrimination abilities in predicting LNM in the training and testing cohorts (all p-value > 0.05). In addition, the T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the AC and ASC subgroups (all p-value > 0.05).

Conclusion: The T2WI + DWI-based, T2WI + DWI + CE-T1WI-based and T2WI+DWI+LNS-MRI-based SVM models showed similar good discrimination ability and performed better than the morphologic criteria of LNS-MRI in predicting LNM in patients with cervical non-SCC. The inclusion of the CE-T1WI sequence and morphologic criteria of LNS-MRI did not significantly improve the performance of the T2WI + DWI-based model. The T2WI + DWI-based and T2WI + DWI + LNS-MRI-based SVM models showed robust performance in the subgroup analysis.

Keywords: Adenocarcinoma; Adenosquamous carcinoma; Cervical cancer; Lymph node metastasis; Texture analysis.

PubMed Disclaimer

Publication types