On the innervation of trigeminal mesencephalic primary afferent neurons by adenosine deaminase-containing projections from the hypothalamus in the rat
- PMID: 3515225
- DOI: 10.1016/0306-4522(86)90232-0
On the innervation of trigeminal mesencephalic primary afferent neurons by adenosine deaminase-containing projections from the hypothalamus in the rat
Abstract
The localization and sources of adenosine deaminase-containing structures in the mesencephalic nucleus of the trigeminal nerve of the rat was studied using indirect immunofluorescence or immunoperoxidase immunohistochemical staining techniques for adenosine deaminase in combination with retrograde fluorescent tracing or lesion methods. The majority of large mesencephalic neurons were engulfed by a dense adenosine deaminase-immunoreactive plexus. Immunostaining was often punctate surrounding neuronal profiles or sometimes had the appearance of varicose fibers coursing over the neuronal surface. Occasionally, immunostained axons were found travelling towards and contacting mesencephalic neurons. Mesencephalic neuronal somas surrounded by immunofluorescence staining for adenosine deaminase were simultaneously labelled with fast blue after injections of this dye into the temporalis or masseter muscles of mastication. Injections of fast blue into the mesencephalic nucleus resulted in fast blue labelling of adenosine deaminase-immunoreactive neurons in the tuberal, caudal and postmammillary caudal magnocellular nuclei of the hypothalamus. Ablation of these hypothalamic nuclei caused a near total depletion of adenosine deaminase-immunostained fibers in the mesencephalic nucleus including those associated with mesencephalic neurons. It is concluded that adenosine deaminase-containing neurons in the posterior hypothalamus innervate mesencephalic primary sensory neurons, which are known to convey proprioceptive input to trigeminal motor nuclei controlling jaw muscles. The possibility is considered that the hypothalamus, via a direct action on these sensory neurons, may exert automatic control over jaw movements related to aggressive attack, defensive or feeding behavior. In addition, it appears that mesencephalic neurons may provide an ideal model system for electrophysiological investigations of the neurotransmitter(s) utilized by adenosine deaminase-containing hypothalamic projections.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
