Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Jun;76(3):241-67.
doi: 10.1017/s0031182000048137.

Studies on enzyme variation in the murine malaria parasites Plasmodium berghei, P. yoelii, P. vinckei and P. chabaudi by starch gel electrophoresis

Studies on enzyme variation in the murine malaria parasites Plasmodium berghei, P. yoelii, P. vinckei and P. chabaudi by starch gel electrophoresis

R Carter. Parasitology. 1978 Jun.

Abstract

Electrophoretic variation of the enzymes glucose phosphate isomerase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase and glutamate dehydrogenase (NADP-dependent) has been studied in the African murine malaria parasites Plasmodium berghei, P. yoelii, P. vinckei and P. chabaudi and their subspecies. Horizontal starch gel electrophoresis was used throughout. The number of isolates examined in each subspecies varied from 1 (P. y. nigeriensis) to 24 (P. c. chabaudi). Extensive enzyme variation was found among isolates of most of the subspecies from which more than two such isolates were available for study. It is clear that the phenomenon of enzyme polymorphism is of common occurrence among malaria parasites. With the exception of P. berghei and P. yoelii, of which all isolates share an identical electrophoretic form of lactate dehydrogenase, no enzyme forms are shared between any of the 4 species of murine plasmodia. By contrast, within each species common enzyme forms are shared among each of the subspecies. The subspecies are nevertheless, distinguished from each other by the electrophoretic forms of at least one enzyme. The distribution and reassortment of enzyme variation among isolates of a single subspecies is in accordance with the concept of malaria parasites as sexually reproducing organisms. The study of variation among parasites present in individual wild-caught rodent hosts demonstrates that natural malarial infections usually comprise genetically heterogeneous populations of parasites. Nevertheless, the number of genetically distinct types of parasite of any one species present in a single infected host appears to be small. Generally not more than 2 or 3 clones of parasite of distinct genetic constitution are present in a single infected animal.

PubMed Disclaimer

MeSH terms

Substances