Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 4;12(3):1791-1796.
doi: 10.1021/acscatal.1c05147. Epub 2022 Jan 18.

Efficient Heterogeneous Copper-Catalyzed Alder-Ene Reaction of Allenynamides to Pyrrolines

Affiliations

Efficient Heterogeneous Copper-Catalyzed Alder-Ene Reaction of Allenynamides to Pyrrolines

Zhiyao Zheng et al. ACS Catal. .

Abstract

Herein, we describe an efficient nanocopper-catalyzed Alder-ene reaction of allenynamides. The copper nanoparticles were immobilized on amino-functionalized microcrystalline cellulose. A solvent-controlled chemoselectivity of the reaction was observed, leading to the chemodivergent synthesis of pyrrolines (2,5-dihydropyrroles) and pyrroles. The heterogeneous copper catalyst exhibits high efficiency and good recyclability in the Alder-ene reaction, constituting a highly attractive catalytic system from an economical and environmental point of view.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Cycloisomerization and Oxidative Carbocyclization of Allenynes: (a) [Rh], Ref (8); [Pt], [Au], and [Ag], Ref (9). (b) Refs (10f)–. (c) This Work
Scheme 2
Scheme 2. General Procedure for the Synthesis of Cu-AmP-MCC Catalyst
Figure 1
Figure 1
STEM bright-field images of Cu-AmP-MCC catalyst, (a) with 50 nm scale bar and (b) with 20 nm scale bar. Moiré fringes given by overlapping of crystalline particles are observed.
Scheme 3
Scheme 3. Regioselective and Divergent Synthesis of 4 and 5 from Allenynamides 3
Reaction conditions: 3 (0.20 mmol), Cu-AmP-MCC (5.4 mol %), Cs2CO3 (0.40 mmol), toluene (2.0 mL) or CHCl3 (2.0 mL), 80 °C, 24 h.
Figure 2
Figure 2
Recycling experiments of Cu-AmP-MCC-catalyzed reaction of 3a to Alder-ene product 4a
Scheme 4
Scheme 4. Deuterium-Labeling Experiments: (a) D2O as Additive and (b) Deuterated Substrate with H2O as Additive
Scheme 5
Scheme 5. Proposed Mechanism for the Copper-Catalyzed Alder-Ene Reaction of Allenynamides 3

References

    1. Alder K.; Pascher F.; Schmitz A. Über die Anlagerung von Maleinsäure-anhydrid und Azodicarbonsäure-ester an einfach ungesättigte Koh an einfach ungesättigte Kohlenwasserstoffe. Zur Kenntnis von Substitutionsvorgängen in der Allyl-Stellung. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1943, 76, 27–53. 10.1002/cber.19430760105. - DOI
    2. Hoffmann H. M. R. The Ene Reaction. Angew. Chem., Int. Ed. 1969, 8, 556–577. 10.1002/anie.196905561. - DOI
    3. Snider B. B. Lewis-acid catalyzed ene reactions. Acc. Chem. Res. 1980, 13, 426–432. 10.1021/ar50155a007. - DOI
    4. Mikami K.; Shimizu M. Asymmetric ene reactions in organic synthesis. Chem. Rev. 1992, 92, 1021–1050. 10.1021/cr00013a014. - DOI
    5. Trost B. M.; Probst G. D.; Schoop A. Ruthenium-Catalyzed Alder Ene Type Reactions. A Formal Synthesis of Alternaric Acid. J. Am. Chem. Soc. 1998, 120, 9228–9236. 10.1021/ja981540n. - DOI
    6. Brummond K. M.; Loyer-Drew J. A.. C-C Bond Formation (Part 1) by Addition Reactions: Alder-ene Reaction. In Comprehensive Organometallic Chemistry III; Mingos D. M. P., Crabtree R. H., Eds.; Elsevier: Oxford, 2007; pp 557–601.
    7. Clarke M. L.; France M. B. The carbonyl ene reaction. Tetrahedron 2008, 64, 9003–9031. 10.1016/j.tet.2008.06.075. - DOI
    8. Liu X.; Zheng K.; Feng X. Advancements in Catalytic Asymmetric Intermolecular Ene-Type Reactions. Synthesis 2014, 46, 2241–2257. 10.1055/s-0034-1378528. - DOI
    1. Trost B. M.; Lautens M. Cyclization via isomerization: a palladium(2+)-catalyzed carbocyclization of 1,6-enynes to 1,3- and 1,4-dienes. J. Am. Chem. Soc. 1985, 107, 1781–1783. 10.1021/ja00292a065. - DOI
    1. For selected examples on dienes, see:

    2. Narasaka K.; Hayashi Y.; Shimada S.; Yamada J. Asymmetric Intramolecular Ene Reaction Catalyzed by a Chiral Titanium Reagent and Synthesis of (—)-δ-Cadinene. Isr. J. Chem. 1991, 31, 261–271. 10.1002/ijch.199100030. - DOI
    3. Desimoni G.; Faita G.; Righetti P.; Sardone N. Catalysis with inorganic cations. VI. The effect of chiral bis-oxazoline-magnesium perchlorate catalysts on chemo- and enantioselectivity of intramolecular Hetero Diels-Alder and ene reaction. Tetrahedron 1996, 52, 12019–12030. 10.1016/0040-4020(96)00696-5. - DOI
    4. Narasaka K.; Hayashi Y.; Shimada S. Asymmetric Intramolecular Ene Reaction Catalyzed by a Chiral Titanium Alkoxide. Chem. Lett. 1988, 17, 1609–1612. 10.1246/cl.1988.1609. - DOI
    5. Xia Q.; Ganem B. Asymmetric Total Synthesis of (−)-α-Kainic Acid Using an Enantioselective, Metal-Promoted Ene Cyclization. Org. Lett. 2001, 3, 485–487. 10.1021/ol007009q. - DOI - PubMed
    6. Gotoh H.; Ogino H.; Ishikawa H.; Hayashi Y. One-pot synthesis of chiral bicyclo[3.3.0]octatrienes using diphenylprolinol silyl ether-mediated ene-type reaction. Tetrahedron 2010, 66, 4894–4899. 10.1016/j.tet.2010.03.010. - DOI
    7. Liu W.; Zhou P.; Lang J.; Dong S.; Liu X.; Feng X. A nickel(II)-catalyzed asymmetric intramolecular Alder-ene reaction of 1,7-dienes. Chem. Commun. 2019, 55, 4479–4482. 10.1039/C9CC01521C. - DOI - PubMed
    8. Yamamoto Y. Transition-Metal-Catalyzed Cycloisomerizations of α,ω-Dienes. Chem. Rev. 2012, 112, 4736–4769. 10.1021/cr300050n. - DOI - PubMed
    1. For selected examples on enynes, see:

    2. Sturla S. J.; Kablaoui N. M.; Buchwald S. L. A Titanocene-Catalyzed Intramolecular Ene Reaction: Cycloisomerization of Enynes and Dienynes. J. Am. Chem. Soc. 1999, 121, 1976–1977. 10.1021/ja9839567. - DOI
    3. Cao P.; Wang B.; Zhang X. Rh-Catalyzed Enyne Cycloisomerization. J. Am. Chem. Soc. 2000, 122, 6490–6491. 10.1021/ja994220s. - DOI
    4. Yamazaki S.; Yamada K.; Otsubo T.; Haruna M.; Kutsuwa E.; Tamura H. A novel Lewis acid-promoted enyne cycloisomerization of triester-substituted alkenes. Chem. Commun. 2001, 69–70. 10.1039/b008103p. - DOI
    5. Yamazaki S.; Yamada K.; Yamabe S.; Yamamoto K. Lewis Acid Promoted Cyclization of Enyne Triesters and Diesters. J. Org. Chem. 2002, 67, 2889–2901. 10.1021/jo016159r. - DOI - PubMed
    6. Lei A.; He M.; Wu S.; Zhang X. Highly Enantioselective Rh-Catalyzed Intramolecular Alder-Ene Reactions for the Syntheses of Chiral Tetrahydrofurans. Angew. Chem., Int. Ed. 2002, 41, 3457–3460. 10.1002/1521-3773(20020916)41:18<3457::AID-ANIE3457>3.0.CO;2-3. - DOI - PubMed
    7. Aubert C.; Buisine O.; Malacria M. The Behavior of 1, n-Enynes in the Presence of Transition Metals. Chem. Rev. 2002, 102, 813–834. 10.1021/cr980054f. - DOI - PubMed
    1. For selected examples on triynes, see:

    2. Cho E. J.; Lee D. Selectivity in the Ruthenium-Catalyzed Alder Ene Reactions of Di- and Triynes. J. Am. Chem. Soc. 2007, 129, 6692–6693. 10.1021/ja0719430. - DOI - PMC - PubMed
    3. Karmakar R.; Mamidipalli P.; Yun S. Y.; Lee D. Alder-Ene Reactions of Arynes. Org. Lett. 2013, 15, 1938–1941. 10.1021/ol4005905. - DOI - PubMed
    4. Niu D.; Hoye T. R. The aromatic ene reaction. Nat. Chem. 2014, 6, 34–40. 10.1038/nchem.1797. - DOI - PMC - PubMed
    5. Gupta S.; Lin Y.; Xia Y.; Wink D. J.; Lee D. Alder-ene reactions driven by high steric strain and bond angle distortion to form benzocyclobutenes. Chem. Sci. 2019, 10, 2212–2217. 10.1039/C8SC04277B. - DOI - PMC - PubMed
    6. Karmakar R.; Yun S. Y.; Chen J.; Xia Y.; Lee D. Benzannulation of Triynes to Generate Functionalized Arenes by Spontaneous Incorporation of Nucleophiles. Angew. Chem., Int. Ed. 2015, 54, 6582–6586. 10.1002/anie.201412468. - DOI - PubMed
    7. Sabbasani V. R.; Lee H.; Xie P.; Xia Y.; Lee D. Cyclization of Ynamide-Tethered 1,3,8-Triynes. Chem.—Eur. J. 2017, 23, 8161–8165. 10.1002/chem.201701781. - DOI - PubMed

LinkOut - more resources