Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 13:11:809792.
doi: 10.3389/fcimb.2021.809792. eCollection 2021.

Propionibacterium (Cutibacterium) granulosum Extracellular DNase BmdE Targeting Propionibacterium (Cutibacterium) acnes Biofilm Matrix, a Novel Inter-Species Competition Mechanism

Affiliations

Propionibacterium (Cutibacterium) granulosum Extracellular DNase BmdE Targeting Propionibacterium (Cutibacterium) acnes Biofilm Matrix, a Novel Inter-Species Competition Mechanism

Vicky Bronnec et al. Front Cell Infect Microbiol. .

Abstract

Acne vulgaris is the most common dermatological disorder worldwide affecting more than 80% of adolescents and young adults with a global prevalence of 231 million cases in 2019. The involvement of the skin microbiome disbalance in the pathophysiology of acne is recognized, especially regarding the relative abundance and diversity of Propionibacterium acnes a well-known dominant human skin commensal. Biofilms, where bacteria are embedded into a protective polymeric extracellular matrix, are the most prevalent life style for microorganisms. P. acnes and its biofilm-forming ability is believed to be a contributing factor in the development of acne vulgaris, the persistence of the opportunistic pathogen and antibiotic therapy failures. Degradation of the extracellular matrix is one of the strategies used by bacteria to disperse the biofilm of competitors. In this study, we report the identification of an endogenous extracellular nuclease, BmdE, secreted by Propionibacterium granulosum able to degrade P. acnes biofilm both in vivo and in vitro. This, to our knowledge, may represent a novel competitive mechanism between two closely related species in the skin. Antibiotics targeting P. acnes have been the mainstay in acne treatment. Extensive and long-term use of antibiotics has led to the selection and spread of resistant bacteria. The extracellular DNase BmdE may represent a new bio-therapeutical strategy to combat P. acnes biofilm in acne vulgaris.

Keywords: Cutibacterium; Propionibacterium; acne vulgaris; biofilm; extracellular nuclease; inter-species competition; matrix-degrading enzyme.

PubMed Disclaimer

Conflict of interest statement

Based on these findings an international patent application has been filed (patent #WO2020190203A1: “New compositions and methods for the treatment of acne vulgaris”, 19 March 2020) by Vakona AB where OA is a part owner. This does not alter the authors’ adherence to all the Frontiers Journals policies on sharing data and materials. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
P. acnes biofilm dispersion by P. granulosum cell‐free supernatant (CFS). (A) Dispersal of 6 days old P. acnes biofilms in flask after 24 and 48 hours CFS treatment. (B) P. acnes biofilm dispersion in 96-well plate after 24 hours treatment with different P. granulosum CFS fractions.
Figure 2
Figure 2
In vitro deoxyribonuclease activity of r-BmdE. (A) P. acnes DNA treated with r-BmdE. Control 1 consisted of r-BmdE buffer at the highest volume. (B) Mature biofilm of P. acnes incubated r-BmdE. An equal molar ratio of DNase I (0.0003 mg/mL) was used as a positive control and 10 µL of PBS 1X and r-BmdE buffer were used as negative controls. (C) r-BmdE activity in lipids. Controls 2 and 3, consisted of r-BmdE buffer and water respectively.

References

    1. Bronnec V., Alexeyev O. A. (2021). In Vivo Model of Propionibacterium (Cutibacterium) Spp. Biofilm in Drosophila Melanogaster . Anaerobe 72, 102450. doi: 10.1016/j.anaerobe.2021.102450 - DOI - PubMed
    1. Chen C., Krishnan V., Macon K., Manne K., Narayana S. V., Schneewind O. (2013). Secreted Proteases Control Autolysin-Mediated Biofilm Growth of Staphylococcus Aureus. J. Biol. Chem. 288, 29440–29452. doi: 10.1074/jbc.M113.502039 - DOI - PMC - PubMed
    1. Coenye T., Peeters E., Nelis H. J. (2007). Biofilm Formation by Propionibacterium Acnes Is Associated With Increased Resistance to Antimicrobial Agents and Increased Production of Putative Virulence Factors. Res. Microbiol. 158, 386–392. doi: 10.1016/j.resmic.2007.02.001 - DOI - PubMed
    1. Dessinioti C., Katsambas A. (2017). Propionibacterium Acnes and Antimicrobial Resistance in Acne. Clin. Dermatol. 35, 163–167. doi: 10.1016/j.clindermatol.2016.10.008 - DOI - PubMed
    1. Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S. A., Kjelleberg S. (2016). Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 14, 563–575. doi: 10.1038/nrmicro.2016.94 - DOI - PubMed

Publication types

Substances

LinkOut - more resources