Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation
- PMID: 35161108
- PMCID: PMC8838167
- DOI: 10.3390/ma15031164
Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation
Abstract
Currently, a significant portion (~50%) of global warming emissions, such as CO2, are related to energy production and transportation. As most energy usage will be electrical (as well as transportation), the efficient management of electrical power is thus central to achieve the XXI century climatic goals. Ultra-wide bandgap (UWBG) semiconductors are at the very frontier of electronics for energy management or energy electronics. A new generation of UWBG semiconductors will open new territories for higher power rated power electronics and solar-blind deeper ultraviolet optoelectronics. Gallium oxide-Ga2O3 (4.5-4.9 eV), has recently emerged pushing the limits set by more conventional WBG (~3 eV) materials, such as SiC and GaN, as well as for transparent conducting oxides (TCO), such asIn2O3, ZnO and SnO2, to name a few. Indeed, Ga2O3 as the first oxide used as a semiconductor for power electronics, has sparked an interest in oxide semiconductors to be investigated (oxides represent the largest family of UWBG). Among these new power electronic materials, AlxGa1-xO3 may provide high-power heterostructure electronic and photonic devices at bandgaps far beyond all materials available today (~8 eV) or ZnGa2O4 (~5 eV), enabling spinel bipolar energy electronics for the first time ever. Here, we review the state-of-the-art and prospects of some ultra-wide bandgap oxide semiconductor arising technologies as promising innovative material solutions towards a sustainable zero emission society.
Keywords: Ga2O3; ZnGa2O4; diodes; energy electronics; gallium oxide; power electronics; spinel; transistors; ultra-wide bandgap.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications.Materials (Basel). 2023 Dec 18;16(24):7693. doi: 10.3390/ma16247693. Materials (Basel). 2023. PMID: 38138834 Free PMC article. Review.
-
Ga2O3-on-SiC Composite Wafer for Thermal Management of Ultrawide Bandgap Electronics.ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40817-40829. doi: 10.1021/acsami.1c09736. Epub 2021 Aug 17. ACS Appl Mater Interfaces. 2021. PMID: 34470105
-
Ultra-wide bandgap semiconductor Ga2O3 power diodes.Nat Commun. 2022 Jul 6;13(1):3900. doi: 10.1038/s41467-022-31664-y. Nat Commun. 2022. PMID: 35794123 Free PMC article.
-
2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges.Small Methods. 2022 Apr;6(4):e2101348. doi: 10.1002/smtd.202101348. Epub 2022 Mar 11. Small Methods. 2022. PMID: 35277948 Review.
-
Ultra-Wide Band Gap Ga2O3-on-SiC MOSFETs.ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7137-7147. doi: 10.1021/acsami.2c21048. Epub 2023 Jan 26. ACS Appl Mater Interfaces. 2023. PMID: 36700621
Cited by
-
Synthesis of Ultrawide Band Gap TeO2 Nanoparticles by Pulsed Laser Ablation in Liquids: Top Ablation versus Bottom Ablation.ACS Omega. 2024 Jun 5;9(24):25832-25840. doi: 10.1021/acsomega.3c10497. eCollection 2024 Jun 18. ACS Omega. 2024. PMID: 38911718 Free PMC article.
-
Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts.Nanomaterials (Basel). 2025 Jul 29;15(15):1169. doi: 10.3390/nano15151169. Nanomaterials (Basel). 2025. PMID: 40801708 Free PMC article.
-
Crystal Structure, Luminescence and Electrical Conductivity of Pure and Mg2+-Doped β-Ga2O3-In2O3 Solid Solutions Synthesized in Oxygen or Argon Atmospheres.Materials (Basel). 2024 Mar 18;17(6):1391. doi: 10.3390/ma17061391. Materials (Basel). 2024. PMID: 38541545 Free PMC article.
-
Interfacial Properties of the SnO/κ-Ga2O3 p-n Heterojunction: A Case of Subsurface Doping Density Reduction via Thermal Treatment in κ-Ga2O3.ACS Appl Mater Interfaces. 2023 Oct 4;15(39):45997-46009. doi: 10.1021/acsami.3c08841. Epub 2023 Sep 21. ACS Appl Mater Interfaces. 2023. PMID: 37733937 Free PMC article.
-
The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire.Materials (Basel). 2022 Nov 24;15(23):8362. doi: 10.3390/ma15238362. Materials (Basel). 2022. PMID: 36499857 Free PMC article.
References
-
- IPCC Working Group I Report, Climate Change 2021: The Physical Science Basis. [(accessed on 9 August 2021)]. Available online: www.ipcc.ch.
-
- US Environmental Protection Agency (EPA) Greenhouse Gas Emissions: Global Greenhouse Gas Emissions Data. [(accessed on 6 November 2017)];2021 Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data.
-
- Leo Lorenz, Power Device Development Trends—From Silicon to Wide Bandgap? [(accessed on 16 December 2021)]. Available online: www.power-and-beyond.com.
-
- Pearton S.J., Ren F., Tadjer M., Kim J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 2018;124:220901. doi: 10.1063/1.5062841. - DOI
-
- Reese S.B., Remo T., Green J., Zakutayev A. How Much Will Gallium Oxide Power Electronics Cost? Joule. 2019;3:903–907. doi: 10.1016/j.joule.2019.01.011. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Research Materials