Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2022 Feb 15;16(1):62.
doi: 10.1186/s13256-022-03289-8.

Management of a human immunodeficiency virus case with discordant antiviral drug resistance profiles in cerebrospinal fluid compared with plasma: a case report

Affiliations
Case Reports

Management of a human immunodeficiency virus case with discordant antiviral drug resistance profiles in cerebrospinal fluid compared with plasma: a case report

Didi Bang et al. J Med Case Rep. .

Abstract

Background: Human immunodeficiency virus-1-associated neurocognitive disorder is a known complication in individuals treated with antiretroviral therapy. Cerebrospinal fluid escape, which is defined as discordant higher cerebrospinal fluid viremia than plasma, may occur in antiretroviral therapy-experienced individuals. Different cerebrospinal fluid versus plasma mutation patterns have been observed in individuals with cerebrospinal fluid escape.

Case presentation: A 46-year-old adult African male with human immunodeficiency virus-1 infection and acquired immunodeficiency syndrome based on cerebral toxoplasmosis and a chronic hepatitis B virus infection developed cerebrospinal fluid escape. A different human immunodeficiency virus-1 genotypic drug resistance profile was observed in plasma compared with cerebrospinal fluid. Brain biopsy and cerebral magnetic resonance imaging indicated the development of human immunodeficiency virus encephalopathy. A discordant protease inhibitor mutation/wild-type T74PT in plasma but not in cerebrospinal fluid indicated poor central nervous system penetration due to the selective pressure of drug therapy. An intensified antiretroviral therapy regimen including dolutegravir with good central nervous system penetration improved conditions.

Conclusions: This case shows the importance of measuring human immunodeficiency virus drug resistance in cerebrospinal fluid, which might differ from resistance detected in plasma samples and target effective antiretroviral therapy treatment accordingly.

Keywords: AIDS; Cerebrospinal fluid; HIV; HIV-associated neurocognitive disorder; Protease inhibitor drug resistance.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Resistance mutation development, antiretroviral therapy, human immunodeficiency virus-1 RNA viral load, and cluster of differentiation 4 cell count over time. a human immunodeficiency virus resistance mutation patterns are shown (red background), susceptible (green background), cerebrospinal fluid findings (yellow background), and time in months from the initial presentation (T = 0). b Plasma and cerebrospinal human immunodeficiency virus-1 RNA viral load and cluster of differentiation 4 cell count are shown over time. Antiretroviral therapy was commenced with a three-drug combination therapy including two nucleoside(tide) reverse-transcriptase inhibitors (lamivudine, zidovudine), and the non-nucleoside reverse transcriptase EFV 60 months after initial presentation. The non-nucleoside reverse transcriptase was discontinued and a protease inhibitor was added (month 75). Therapy was intensified to a four-drug regimen (month 169) with the inclusion of the INI raltegravir, and later substituted by the more potent dolutegravir (month 227). The different nucleoside(tide) reverse-transcriptase inhibitors used for treatment included lamivudine, zidovudine, tenofovir, abacavir, and emtricitabine). Protease inhibitors used were nelfinavir, lopinavir/ritonavir, atazanavir, and darunavir

Similar articles

References

    1. Clavel F, Allan J, Hance AJ. HIV drug resistance. N Engl J Med. 2004;350:1023–1035. doi: 10.1056/NEJMra025195. - DOI - PubMed
    1. Soulie C, Grudé M, Descamps D, Amiel C, Morand-Joubert L, Raymond S, et al. Antiretroviral-treated HIV-1 patients can harbour resistant viruses in CSF despite an undetectable viral load in plasma. J Antimicrob Chemother. 2017;72:2351–2354. - PubMed
    1. Rhee S, Gonzales MJ, Kantor R, Betts BJ, Ravela J, Shafer RW. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 2003;31:298–303. doi: 10.1093/nar/gkg100. - DOI - PMC - PubMed
    1. Nightingale S, Geretti AM, Beloukas A, Fisher M, Winston A, Else L, et al. Discordant CSF/plasma HIV-1 RNA in patients with unexplained low-level viraemia. J Neurovirol. 2016;22:852–860. doi: 10.1007/s13365-016-0448-1. - DOI - PMC - PubMed
    1. Nightingale S, Winston A, Letendre S, Michael BD, Mcarthur JC, Khoo S, et al. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol. 2014;13:1139–1151. doi: 10.1016/S1474-4422(14)70137-1. - DOI - PMC - PubMed

Publication types

Substances