Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2022 Mar 18;40(13):2068-2075.
doi: 10.1016/j.vaccine.2022.02.029. Epub 2022 Feb 8.

A randomized, double-blind phase I clinical trial of two recombinant dimeric RBD COVID-19 vaccine candidates: Safety, reactogenicity and immunogenicity

Affiliations
Clinical Trial

A randomized, double-blind phase I clinical trial of two recombinant dimeric RBD COVID-19 vaccine candidates: Safety, reactogenicity and immunogenicity

Sonia Pérez-Rodríguez et al. Vaccine. .

Abstract

Background: The Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is the target for many COVID-19 vaccines. Here we report results for phase I clinical trial of two COVID-19 vaccine candidates based on recombinant dimeric RBD (d-RBD).

Methods: We performed a randomized, double-blind, phase I clinical trial in the National Centre of Toxicology in Havana. Sixty Cuban volunteers aged 19-59 years were randomized into three groups (20 subjects each): 1) FINLAY-FR-1 (50 µg d-RBD plus outer membrane vesicles from N. meningitidis); 2) FINLAY-FR-1A-50 (50 µg d-RBD, three doses); 3) FINLAY-FR-1A-25 (25 µg d-RDB, three doses). The FINLAY-FR-1 group was randomly divided to receive a third dose of the same vaccine candidate (homologous schedule) or FINLAY-FR-1A-50 (heterologous schedule). The primary outcomes were safety and reactogenicity. The secondary outcome was vaccine immunogenicity. Humoral response at baseline and following each vaccination was evaluated using live-virus neutralization test, anti-RBD IgG ELISA and in-vitro neutralization test of RBD:hACE2 interaction.

Results: Most adverse events were of mild intensity (63.5%), solicited (58.8%), and local (61.8%); 69.4% with causal association with vaccination. Serious adverse events were not found. The FINLAY-FR-1 group reported more subjects with adverse events than the other two groups. After the third dose, anti-RBD seroconversion was 100%, 94.4% and 90% for the FINLAY-FR-1, FINLAY-FR-1A-50 and FINLAY-FR-1A-25 respectively. The in-vitro inhibition of RBD:hACE2 interaction increased after the second dose in all formulations. The geometric mean neutralizing titres after the third dose rose significantly in the group vaccinated with FINLAY-FR-1 with respect to the other formulations and the COVID-19 Convalescent Serum Panel. No differences were found between FINLAY-FR-1 homologous or heterologous schedules.

Conclusions: Vaccine candidates were safe and immunogenic, and induced live-virus neutralizing antibodies against SARS-CoV-2. The highest values were obtained when outer membrane vesicles were used as adjuvant.

Trial registry: https://rpcec.sld.cu/en/trials/RPCEC00000338-En.

Keywords: Adjuvants; COVID-19; Coronavirus infection; Immunization schedule; Immunopotentiator; Neutralizing antibodies; SARS-CoV-2; Vaccines.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The Finlay Vaccine Institute and the Centre of Molecular Immunology have filed patent applications related to these vaccine candidates. ROA, MCRG, BPM, YCR, LRN, RPN, RGM, MMP, YVB, DGR, and VVB are researchers of Finlay Vaccine Institute, and THG, GBB, FPE and BSR are researchers of the Centre of Molecular Immunology, the institutions that manufacture the vaccines. The other authors declare no competing interests. No authors received an honorarium for this paper.

Figures

Fig. 1
Fig. 1
Disposition of subjects. Trial profile. FINLAY-FR-1 = dimeric-Receptor Binding Domain (d-RBD, 50 µg) and outer membrane vesicles of Neisseria meningitidis group B (20 µg) in aluminium hydroxide gel. FINLAY-FR-1-50 = d-RBD (50 µg) in aluminium hydroxide gel. FINLAY-FR-1-25 = d-RBD (25 µg) in aluminium hydroxide gel.
Fig. 2
Fig. 2
Conventional live-virus neutralization titres (cVNT) after second and third doses with the dimeric-Receptor Binding Domain (d-RBD) vaccine candidates: FINLAY-FR-1 = dimeric-Receptor Binding Domain (d-RBD, 50 µg) and outer membrane vesicles of Neisseria meningitidis group B (20 µg) in aluminium hydroxide gel. FINLAY-FR-1A–50 = d-RBD (50 µg) in aluminium hydroxide gel. FINLAY-FR-1A–25 = d-RBD (25 µg) in aluminium hydroxide gel. FINLAY-FR-1 post-third dose = blue circles represent subjects with homologous schedules; green squares represent subjects with heterologous schedules. CCSP = Cuban convalescent serum panel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Similar articles

  • Safety and immunogenicity of the FINLAY-FR-1A vaccine in COVID-19 convalescent participants: an open-label phase 2a and double-blind, randomised, placebo-controlled, phase 2b, seamless, clinical trial.
    Ochoa-Azze R, Chang-Monteagudo A, Climent-Ruiz Y, Macías-Abraham C, Valenzuela-Silva C, de Los Ángeles García-García M, Jerez-Barceló Y, Triana-Marrero Y, Ruiz-Villegas L, Dairon Rodríguez-Prieto L, Guerra-Chaviano PP, Sánchez-Ramírez B, Hernández-García T, Orosa-Vázquez I, Díaz-Hernández M, Chiodo F, Calcagno A, Ghisetti V, Rodríguez-Acosta M, Noa-Romero E, Enríquez-Puertas J, Ortega-León D, Valdivia-Álvarez I, Delahanty-Fernández A, Palenzuela-Díaz A, Rodríguez-Noda L, González-Mugica R, Valdés-Balbín Y, García-Rivera D, Verez-Bencomo V. Ochoa-Azze R, et al. Lancet Respir Med. 2022 Aug;10(8):785-795. doi: 10.1016/S2213-2600(22)00100-X. Epub 2022 Jun 9. Lancet Respir Med. 2022. PMID: 35691295 Free PMC article. Clinical Trial.
  • Safety and immunogenicity of anti-SARS CoV-2 vaccine SOBERANA 02 in homologous or heterologous scheme: Open label phase I and phase IIa clinical trials.
    Eugenia-Toledo-Romaní M, Verdecia-Sánchez L, Rodríguez-González M, Rodríguez-Noda L, Valenzuela-Silva C, Paredes-Moreno B, Sánchez-Ramírez B, Pérez-Nicado R, González-Mugica R, Hernández-García T, Bergado-Baez G, Pi-Estopiñán F, Cruz-Sui O, Fraga-Quintero A, García-Montero M, Palenzuela-Díaz A, Baró-Román G, Mendoza-Hernández I, Fernandez-Castillo S, Climent-Ruiz Y, Santana-Mederos D, Ramírez Gonzalez U, García-Vega Y, Pérez-Massón B, Guang-Wu-Chen, Boggiano-Ayo T, Ojito-Magaz E, Rivera DG, Valdés-Balbín Y, García-Rivera D, Vérez-Bencomo V; SOBERANA Research Group; Gómez-Maceo Y, Reyes-Matienzo R, Manuel Coviella-Artime J, Morffi-Cinta I, Martínez-Pérez M, Castillo-Quintana I, Garcés-Hechavarría A, Valera-Fernández R, Martínez-Bedoya D, Garrido-Arteaga R, Cardoso-SanJorge F, Quintero Moreno L, Ontivero-Pino I, Teresa Pérez-Guevara M, Morales-García M, Noa-Romero E, Orosa-Vázquez I, Díaz-Hernández M, Rojas G, Tundidor Y, García-López E, Muñoz-Morejon Y, Galano-Frutos E, Rodríguez-Alvarez J, Arteaga A, Medina Nápoles M, Espi Ávila J, Fontanies Fernández M. Eugenia-Toledo-Romaní M, et al. Vaccine. 2022 Jul 29;40(31):4220-4230. doi: 10.1016/j.vaccine.2022.05.082. Epub 2022 Jun 6. Vaccine. 2022. PMID: 35691871 Free PMC article. Clinical Trial.
  • Open-label phase I/II clinical trial of SARS-CoV-2 receptor binding domain-tetanus toxoid conjugate vaccine (FINLAY-FR-2) in combination with receptor binding domain-protein vaccine (FINLAY-FR-1A) in children.
    Puga-Gómez R, Ricardo-Delgado Y, Rojas-Iriarte C, Céspedes-Henriquez L, Piedra-Bello M, Vega-Mendoza D, Pérez NP, Paredes-Moreno B, Rodríguez-González M, Valenzuela-Silva C, Sánchez-Ramírez B, Rodríguez-Noda L, Pérez-Nicado R, González-Mugica R, Hernández-García T, Fundora-Barrios T, Echevarría MD, Enriquez-Puertas JM, Infante-Hernández Y, Palenzuela-Díaz A, Gato-Orozco E, Chappi-Estévez Y, Francisco-Pérez JC, Suarez-Martinez M, Castillo-Quintana IC, Fernandez-Castillo S, Climent-Ruiz Y, Santana-Mederos D, García-Vega Y, Toledo-Romani ME, Doroud D, Biglari A, Valdés-Balbín Y, García-Rivera D, Vérez-Bencomo V; SOBERANA Research Group. Puga-Gómez R, et al. Int J Infect Dis. 2023 Jan;126:164-173. doi: 10.1016/j.ijid.2022.11.016. Epub 2022 Nov 18. Int J Infect Dis. 2023. PMID: 36403819 Free PMC article. Clinical Trial.
  • Safety, efficacy, and immunogenicity of the NVX-CoV2373 vaccine.
    Underwood E, Dunkle LM, Madhi SA, Gay CL, Heath PT, Kotloff KL, Smith K, Chau G, Galbiati S, McGarry A, Woo W, Cho I, Alves K, Áñez G, Bennett C, Shinde V, Fries L, Mallory RM, Glenn GM, Toback S. Underwood E, et al. Expert Rev Vaccines. 2023 Jan-Dec;22(1):501-517. doi: 10.1080/14760584.2023.2218913. Expert Rev Vaccines. 2023. PMID: 37246757 Review.
  • COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus.
    da Costa CBP, Martins FJ, da Cunha LER, Ratcliffe NA, Cisne de Paula R, Castro HC. da Costa CBP, et al. Int Immunopharmacol. 2021 Jan;90:107220. doi: 10.1016/j.intimp.2020.107220. Epub 2020 Nov 20. Int Immunopharmacol. 2021. PMID: 33302034 Free PMC article. Review.

Cited by

References

    1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Geneva: WHO; 2021. Available from: https://covid19.who.int.
    1. Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11(1) doi: 10.1038/s41467-020-15562-9. - DOI - PMC - PubMed
    1. Rabi F.A., Al Zoubi M.S., Kasasbeh G.A., Salameh D.M., Al-Nasser A.D. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020;9:231. doi: 10.3390/pathogens9030231. Available from. - DOI - PMC - PubMed
    1. Shi-Lee W., Wheatley A.K., Kent S.J., DeKosky B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 2020;5:1185–1191. - PubMed
    1. Arvin A.M., Fink K., Schmid M.A., Cathcart A., Spreafico R., Havenar-Daughton C., et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature. 2020;584(7821):353–363. - PubMed

Publication types