Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories
- PMID: 35166410
- DOI: 10.1002/adma.202110054
Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories
Abstract
Organ- and tissue-level biological functions are intimately linked to microscale cell-cell interactions and to the overarching tissue architecture. Together, biofabrication and organoid technologies offer the unique potential to engineer multi-scale living constructs, with cellular microenvironments formed by stem cell self-assembled structures embedded in customizable bioprinted geometries. This study introduces the volumetric bioprinting of complex organoid-laden constructs, which capture key functions of the human liver. Volumetric bioprinting via optical tomography shapes organoid-laden gelatin hydrogels into complex centimeter-scale 3D structures in under 20 s. Optically tuned bioresins enable refractive index matching of specific intracellular structures, countering the disruptive impact of cell-mediated light scattering on printing resolution. This layerless, nozzle-free technique poses no harmful mechanical stresses on organoids, resulting in superior viability and morphology preservation post-printing. Bioprinted organoids undergo hepatocytic differentiation showing albumin synthesis, liver-specific enzyme activity, and remarkably acquired native-like polarization. Organoids embedded within low stiffness gelatins (<2 kPa) are bioprinted into mathematically defined lattices with varying degrees of pore network tortuosity, and cultured under perfusion. These structures act as metabolic biofactories in which liver-specific ammonia detoxification can be enhanced by the architectural profile of the constructs. This technology opens up new possibilities for regenerative medicine and personalized drug testing.
Keywords: biofabrication; bioresins; hydrogels; light-based 3D printing; volumetric additive manufacturing.
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Similar articles
-
Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics.Adv Mater. 2023 Aug;35(32):e2300756. doi: 10.1002/adma.202300756. Epub 2023 Jun 22. Adv Mater. 2023. PMID: 37099802
-
Multi-material Volumetric Bioprinting and Plug-and-play Suspension Bath Biofabrication via Bioresin Molecular Weight Tuning and via Multiwavelength Alignment Optics.Adv Mater. 2025 Apr;37(13):e2409355. doi: 10.1002/adma.202409355. Epub 2025 Feb 26. Adv Mater. 2025. PMID: 40012257 Free PMC article.
-
Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.Biofabrication. 2018 May 11;10(3):034101. doi: 10.1088/1758-5090/aac00c. Biofabrication. 2018. PMID: 29693552
-
Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues.Cells. 2024 Oct 1;13(19):1638. doi: 10.3390/cells13191638. Cells. 2024. PMID: 39404401 Free PMC article. Review.
-
Embedded bioprinting for designer 3D tissue constructs with complex structural organization.Acta Biomater. 2022 Mar 1;140:1-22. doi: 10.1016/j.actbio.2021.11.048. Epub 2021 Dec 5. Acta Biomater. 2022. PMID: 34875360 Review.
Cited by
-
Vascularized organ bioprinting: From strategy to paradigm.Cell Prolif. 2023 May;56(5):e13453. doi: 10.1111/cpr.13453. Epub 2023 Mar 16. Cell Prolif. 2023. PMID: 36929675 Free PMC article. Review.
-
Controlling Light in Scattering Materials for Volumetric Additive Manufacturing.Adv Sci (Weinh). 2022 Aug;9(22):e2105144. doi: 10.1002/advs.202105144. Epub 2022 May 18. Adv Sci (Weinh). 2022. PMID: 35585671 Free PMC article.
-
Synergizing Algorithmic Design, Photoclick Chemistry and Multi-Material Volumetric Printing for Accelerating Complex Shape Engineering.Adv Sci (Weinh). 2023 Sep;10(26):e2300912. doi: 10.1002/advs.202300912. Epub 2023 Jul 3. Adv Sci (Weinh). 2023. PMID: 37400372 Free PMC article.
-
Multidirectional Filamented Light Biofabrication Creates Aligned and Contractile Cardiac Tissues.Adv Sci (Weinh). 2024 Dec;11(47):e2404509. doi: 10.1002/advs.202404509. Epub 2024 Oct 7. Adv Sci (Weinh). 2024. PMID: 39373330 Free PMC article.
-
Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers.ACS Biomater Sci Eng. 2025 Jan 13;11(1):156-181. doi: 10.1021/acsbiomaterials.4c01837. Epub 2025 Jan 2. ACS Biomater Sci Eng. 2025. PMID: 39746181 Free PMC article. Review.
References
-
- V. Mironov, T. Trusk, V. Kasyanov, S. Little, R. Swaja, R. Markwald, Biofabrication 2009, 1, 022001.
-
- R. Levato, T. Jungst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
-
- J. Groll, T. Boland, T. Blunk, J. A. Burdick, D.-W. W. Cho, P. D. Dalton, B. Derby, G. Forgacs, Q. Li, V. A. Mironov, L. Moroni, M. Nakamura, W. Shu, S. Takeuchi, G. Vozzi, T. B. F. F. Woodfield, T. Xu, J. J. Yoo, J. Malda, Biofabrication 2016, 8, 013001.
-
- M. M. Laronda, A. L. Rutz, S. Xiao, K. A. Whelan, F. E. Duncan, E. W. Roth, T. K. Woodruff, R. N. Shah, Nat. Commun. 2017, 8, 15261.
-
- E. A. Bulanova, E. V. Koudan, J. Degosserie, C. Heymans, F. D. A. S. Pereira, V. A. Parfenov, Y. Sun, Q. Wang, S. A. Akhmedova, I. K. Sviridova, N. S. Sergeeva, G. A. Frank, Y. D. Khesuani, C. E. Pierreux, V. A. Mironov, Biofabrication 2017, 9, 034105.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources