Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan;23(1):89-98.
doi: 10.1007/s11864-021-00935-z. Epub 2022 Feb 15.

Radiation and Chimeric Antigen Receptor T-cell Therapy in B-cell Non-Hodgkin Lymphomas

Affiliations
Review

Radiation and Chimeric Antigen Receptor T-cell Therapy in B-cell Non-Hodgkin Lymphomas

Anagha Deshpande et al. Curr Treat Options Oncol. 2022 Jan.

Abstract

Chimeric antigen receptor T-cell therapy (CAR-T) is a revolutionary advancement in the management of chemotherapy refractory B-cell non-Hodgkin lymphomas representing a potentially curative therapy in scenarios that were previously only palliative. CAR-T cell therapy is associated with unique toxicities as well as practical challenges. One of those challenges is how to manage active lymphoma during the weeks-long CAR-T manufacturing process. Radiation therapy, steroids, and systemic therapy have all been used for what would be considered "bridging therapy" during this time frame. Radiation therapy is a particularly attractive strategy given its proven efficacy in chemotherapy refractory lymphomas; ability to stabilize patients, debulk disease, and palliate symptoms; as well as its potential to enhance the expansion and activity of CAR-T cells. Optimal dose, timing, and method of delivery are yet to be established though there is consensus that it should occur after apheresis if being used as a pre-treatment bridge. Another practical challenge is the management of patients in whom CAR-T cells fail. There is a potential emerging role for salvage radiation therapy, in select patients, for either palliation or as a means to get patients another potentially curative therapy. Collaborative well-designed prospective clinical trials are needed to definitively establish the role for radiation therapy (before or after CAR-T therapy) as well as define the impact on CAR-T cell activity/persistence and associated toxicity.

Keywords: CAR-T; Chimeric antigen receptor; DLBCL; Lymphoma; Radiation.

PubMed Disclaimer

Similar articles

Cited by

References

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance
    1. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–s9. - PubMed
    1. Chavez JC, Locke FL. CAR T cell therapy for B-cell lymphomas. Best Pract Res Clin Haematol. 2018;31(2):135–46. - PubMed - PMC
    1. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C, Sehgal A, Solomon SR, Ghosh N, Albertson TM, Garcia J, Kostic A, Mallaney M, Ogasawara K, Newhall K, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. - PubMed
    1. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. - PubMed - PMC
    1. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. - PubMed

MeSH terms

Substances

LinkOut - more resources