Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 May:295:133952.
doi: 10.1016/j.chemosphere.2022.133952. Epub 2022 Feb 12.

Insight into integration of photocatalytic and microbial wastewater treatment technologies for recalcitrant organic pollutants: From sequential to simultaneous reactions

Affiliations
Review

Insight into integration of photocatalytic and microbial wastewater treatment technologies for recalcitrant organic pollutants: From sequential to simultaneous reactions

Zhikun Lu et al. Chemosphere. 2022 May.

Abstract

The more and more stringent environmental standards for recalcitrant organic pollutants pushed forward the development of integration of photocatalytic and microbial wastewater treatment technologies. The past studies proposed mainly two typical integration ways: a) Independent sequence of photocatalysis and biodegradation (ISPB) conducting the sequential reactions; b) Intimate coupling of photocatalysis and biodegradation (ICPB) conducting the simultaneous reactions. Although ICPB has received more attraction recently due to its novelty, ISPB gives an edge in certain cases. The article reviews the state-of-the-art ISPB and ICPB studies to comprehensively compare the two systems. The strengths and weaknesses of ISPB and ICPB regarding the treatment efficiency, cost, toxicity endurance and flexibility are contradistinguished. The reactor set-ups, photocatalysts, microbial characteristics of ISPB and ICPB are summarized. The applications for different kinds of recalcitrant compounds are elaborated to give a holistic view of the removal efficiencies and transformation pathways by the two technologies. Currently, in-depth understandings about the interference among mixed pollutants, co-existing components and key parameters in realistic wastewater are urgently needed. The long-term and large-scale application cases of the integration technologies are still rare. Overall, we conclude that both ISPB and ICPB technologies are reaching maturity while challenges still exist for two systems especially regarding the reliability, economy and generalization for realistic wastewater treatment plants. Future research should not only manage to reduce the cost and energy consumption by upgrading reactors and developing novel catalysts, but also attach importance to the cocktail effects of wastewater during the sequential or simultaneous photocatalysis and biodegradation.

Keywords: Biodegradation; Independent sequence; Intimate coupling; Photocatalysis; Reactor; Removal efficiency.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources