Mechanistic modelling of enzyme-restoration effects of new recombinant liver-targeted proteins in acute intermittent porphyria
- PMID: 35170015
- PMCID: PMC9310908
- DOI: 10.1111/bph.15821
Mechanistic modelling of enzyme-restoration effects of new recombinant liver-targeted proteins in acute intermittent porphyria
Abstract
Background and purpose: Acute intermittent porphyria (AIP) is a rare disease caused by a genetic mutation in the hepatic activity of the porphobilinogen-deaminase. We aimed to develop a mechanistic model of the enzymatic restoration effects of a novel therapy based on the administration of different formulations of recombinant human-PBGD (rhPBGD) linked to the ApoAI lipoprotein. This fusion protein circulates in blood, incorporating into HDL and penetrating hepatocytes.
Experimental approach: Single i.v. dose of different formulations of rhPBGD linked to ApoAI were administered to AIP mice in which a porphyric attack was triggered by i.p. phenobarbital. Data consist on 24 h urine excreted amounts of heme precursors, 5-aminolevulinic acid (ALA), PBG and total porphyrins that were analysed using non-linear mixed-effects analysis.
Key results: The mechanistic model successfully characterized over time the amounts excreted in urine of the three heme precursors for different formulations of rhPBGD and unravelled several mechanisms in the heme pathway, such as the regulation in ALA synthesis by heme. Treatment with rhPBGD formulations restored PBGD activity, increasing up to 51 times the value of the rate of tPOR formation estimated from baseline. Model-based simulations showed that several formulation prototypes provided efficient protective effects when administered up to 1 week prior to the occurrence of the AIP attack.
Conclusion and implications: The model developed had excellent performance over a range of doses and formulation type. This mechanistic model warrants use beyond ApoAI-conjugates and represents a useful tool towards more efficient drug treatments of other enzymopenias as well as for acute intermittent porphyria.
Keywords: AIP; acute intermittent porphyria; mechanistic; modelling; porphobilinogen deaminase.
© 2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Conflict of interest statement
The financial sponsors had no role in the analysis or the development of conclusions.
Figures






Similar articles
-
Biochemical characterization of porphobilinogen deaminase-deficient mice during phenobarbital induction of heme synthesis and the effect of enzyme replacement.Mol Med. 2003 Sep-Dec;9(9-12):193-9. doi: 10.2119/2004-00002.johansson. Mol Med. 2003. PMID: 15208740 Free PMC article.
-
Porphobilinogen deaminase over-expression in hepatocytes, but not in erythrocytes, prevents accumulation of toxic porphyrin precursors in a mouse model of acute intermittent porphyria.J Hepatol. 2010 Mar;52(3):417-24. doi: 10.1016/j.jhep.2009.09.003. Epub 2009 Sep 23. J Hepatol. 2010. PMID: 19815305
-
Computational disease model of phenobarbital-induced acute attacks in an acute intermittent porphyria mouse model.Mol Genet Metab. 2019 Nov;128(3):367-375. doi: 10.1016/j.ymgme.2018.12.009. Epub 2018 Dec 21. Mol Genet Metab. 2019. PMID: 30639045
-
Understanding Carbohydrate Metabolism and Insulin Resistance in Acute Intermittent Porphyria.Int J Mol Sci. 2022 Dec 20;24(1):51. doi: 10.3390/ijms24010051. Int J Mol Sci. 2022. PMID: 36613492 Free PMC article. Review.
-
Acute intermittent porphyria.Semin Liver Dis. 1998;18(1):17-24. doi: 10.1055/s-2007-1007136. Semin Liver Dis. 1998. PMID: 9516674 Review.
References
-
- Alexander, S. P. , Christopoulos, A. , Davenport, A. P. , Kelly, E. , Mathie, A. , Peters, J. A. , Veale, E. L. , Armstrong, J. F. , Faccenda, E. , Harding, S. D. , Pawson, A. J. , Southan, C. , Davies, J. A. , Abbracchio, M. P. , Alexander, W. , Al‐hosaini, K. , Bäck, M. , Barnes, N. M. , Bathgate, R. , … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178(S1), S27–S156. 10.1111/bph.15538 - DOI - PubMed
-
- Alexander, S. P. , Kelly, E. , Mathie, A. , Peters, J. A. , Veale, E. L. , Armstrong, J. F. , Faccenda, E. , Harding, S. D. , Pawson, A. J. , Southan, C. , Davies, J. A. , Amarosi, L. , Anderson, C. M. H. , Beart, P. M. , Broer, S. , Dawson, P. A. , Hagenbuch, B. , Hammond, J. R. , Inui, K.‐I. , … Verri, T. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 178(S1), S412–S513. 10.1111/bph.15543 - DOI - PubMed
-
- Beal, S. , Sheiner, L.B. , Boeckmann, A. , & Bauer, R. J. (2009). NONMEM user's guides. Ellicott City, MD, USA Icon Dev. Solut.
-
- Chen, B. , Solis‐Villa, C. , Hakenberg, J. , Qiao, W. , Srinivasan, R. R. , Yasuda, M. , Balwani, M. , Doheny, D. , Peter, I. , Chen, R. , & Desnick, R. J. (2016). Acute intermittent porphyria: Predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease. Human Mutation, 37, 1215–1222. 10.1002/humu.23067 - DOI - PMC - PubMed
-
- Córdoba, K. M. , Serrano‐Mendioroz, I. , Jericó, D. , Merino, M. , Jiang, L. , Sampedro, A. , Alegre, M. , Corrales, F. , Garrido, M. J. , Martini, P. G. V. , Lanciego, J. L. , Prieto, J. , Berraondo, P. , & Fontanellas, A. (2022). The administration of recombinant porphobilinogen deaminase targeted to the liver corrects enzymopenia in acute intermittent porphyria. Science Translational Medicine, 14(627), eabc0700. 10.1126/scitranslmed.abc0700 Epub 2022 Jan 12.PMID: 35020410 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous