Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May;102(5):1878-86.
doi: 10.1083/jcb.102.5.1878.

The organic matrix of the skeletal spicule of sea urchin embryos

The organic matrix of the skeletal spicule of sea urchin embryos

S C Benson et al. J Cell Biol. 1986 May.

Abstract

The micromeres that arise at the fourth cell division in developing sea urchin embryos give rise to primary mesenchyme, which in turn differentiates and produces calcareous endoskeletal spicules. These spicules have been isolated and purified from pluteus larvae by washing in combinations of ionic and nonionic detergents followed by brief exposure to sodium hypochlorite. The spicules may be demineralized and the integral matrix dissolves. The matrix is composed of a limited number of glycoproteins rich in aspx, glux, gly, ser, and ala, a composition not unlike that found in matrix proteins of biomineralized tissues of molluscs, sponges, and arthropods. There is no evidence for collagen as a component of the matrix. The matrix contains N-linked glycoproteins of the complex type. The matrix arises primarily from proteins synthesized from late gastrulation onward, during the time that spicule deposition occurs. The mixture of proteins binds calcium and is an effective immunogen. Electrophoresis of the glycoproteins on SDS-containing acrylamide gels, followed by blotting and immunocytochemical detection, reveals major components of approximately 47, 50, 57, and 64 kD, and several minor components. These same components may be detected with silver staining or fluorography of amino acid-labeled proteins. In addition to providing convenient molecular marker for the study of the development of the micromere lineage, the spicule matrix glycoproteins provide an interesting system for investigations in biomineralization.

PubMed Disclaimer

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. Anal Biochem. 1973 Aug;54(2):484-9 - PubMed
    1. Cell Differ. 1972 Aug;1(3):157-65 - PubMed
    1. Eur J Biochem. 1975 Aug 15;56(2):335-41 - PubMed

Publication types