Towards enduring autonomous robots via embodied energy
- PMID: 35173338
- DOI: 10.1038/s41586-021-04138-2
Towards enduring autonomous robots via embodied energy
Abstract
Autonomous robots comprise actuation, energy, sensory and control systems built from materials and structures that are not necessarily designed and integrated for multifunctionality. Yet, animals and other organisms that robots strive to emulate contain highly sophisticated and interconnected systems at all organizational levels, which allow multiple functions to be performed simultaneously. Herein, we examine how system integration and multifunctionality in nature inspires a new paradigm for autonomous robots that we call Embodied Energy. Whereas most untethered robots use batteries to store energy and power their operation, recent advancements in energy-storage techniques enable chemical or electrical energy sources to be embodied directly within the structures and materials used to create robots, rather than requiring separate battery packs. This perspective highlights emerging examples of Embodied Energy in the context of developing autonomous robots.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
References
-
- Aubin, C. A. et al. Electrolytic vascular systems for energy-dense robots. Nature 571, 51–57 (2019). This paper details the development of a redox flow battery inspired multifunctional energy-storage system that uses a liquid electrolyte to simultaneously provide electrical energy and hydraulic actuation to an untethered soft robotic fish. - PubMed
-
- Shepherd, R. F. et al. Using explosions to power a soft robot. Angew. Chem. Int. Ed. 52, 2892–2896 (2013).
-
- Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016). This work describes the creation of a fully autonomous soft robot that contains an embedded microfluidic logic circuit and is powered by the catalytic decomposition of an on-board monopropellant fuel. - PubMed
-
- Ferreira, A. D. B. L., Nóvoa, P. R. O. & Marques, A. T. Multifunctional material systems: a state-of-the-art review. Compos. Struct. 151, 3–35 (2016). This review presents the state of the art in multifunctional material systems, including recent advancements in structural materials used in energy-storage systems.
-
- Christodoulou, L. & Venables, J. D. Multifunctional material systems: the first generation. JOM 55, 39–45 (2003). This review discusses early research into multifunctional material systems, placing some emphasis on materials used in energy-storage implementations.
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous
