Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb;58(2):179-188.
doi: 10.1007/s11626-022-00652-3. Epub 2022 Feb 17.

Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro

Affiliations

Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro

Reyhaneh Yarmohammadi et al. In Vitro Cell Dev Biol Anim. 2022 Feb.

Abstract

Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk. The optimal concentrations of sex steroid hormones were examined by MTT assay and acridine orange (AO) staining. The impact of E2 and T either individually or together as a combination was examined by ALP activity; the content of total mineral calcium, by von Kossa and alizarin red staining. Additionally, the expression rate of osteogenic specific markers was studied via real-time RT-PCR and immunocytochemistry analyses at day 14 of differentiation. The obtained results illustrated that the differentiation medium supplemented with T-E2 increased not only the ALP enzyme activity and the content of calcium but also the osteogenic-related gene and protein expressions on the 14th day. Furthermore, the results were confirmed by mineralized matrix staining. In conclusion, these data suggest that T could be used as an effective factor for osteogenic induction of hiPSCs combined with the E2 in bone regeneration.

Keywords: Estrogen; Human induced pluripotent stem cells; Osteogenic differentiation; Testosterone.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC (2017) Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97:135–187 - DOI
    1. Atabiekov I, Al-Hendy A, El Andaloussi A (2019) Stem cell therapy in regenerative medicine of reproductive diseases. In: Reis RL (ed) Encyclopedia of tissue engineering and regenerative medicine. Academic Press, Oxford, pp 161–167
    1. Baird A, Lindsay T, Everett A, Iyemere V, Paterson YZ, McClellan A, Henson FMD, Guest DJ (2018) Osteoblast differentiation of equine induced pluripotent stem cells. Biology open 7
    1. Chan HJ, Petrossian K, Chen S (2016) Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol 161:73–83 - DOI
    1. Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14:806–814 - DOI

LinkOut - more resources