Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 2;14(8):10508-10516.
doi: 10.1021/acsami.1c18791. Epub 2022 Feb 18.

Complementary Triple-Ligand Engineering Approach to Methylamine Lead Bromide Nanocrystals for High-Performance Light-Emitting Diodes

Affiliations

Complementary Triple-Ligand Engineering Approach to Methylamine Lead Bromide Nanocrystals for High-Performance Light-Emitting Diodes

Chenjing Zhao et al. ACS Appl Mater Interfaces. .

Abstract

Conjugated and short-molecule capping ligands have been demonstrated as a valid strategy for achieving high-efficiency perovskite nanocrystal (NCs) light-emitting diodes (LEDs) owing to their advantage of allowing efficient carrier transport between NCs. However, monotonously utilizing conjugated ligands cannot achieve sufficient surface modification/passivation for perovskite NCs, leading to their poor photoluminescence quantum yield (PLQY) and dispersibility. This work designs a complementary ligand synthesis method to obtain high-quality methylamine lead bromide (MAPbBr3) NCs and then leverage them into efficient LEDs. The complementary ligand system combines a conjugated ligand 3-phenyl-2-propen-1-amine (PPA) and a long-chain ligand didodecyldimethylammonium bromide (DDAB) together with a well-known inductive inorganic ligand ZnBr2. With such complementary ligand engineering, we significantly improve the emissive features of MAPbBr3 NCs (PLQY: 99% ± 0.7%). Simultaneously, the complementary ligand strategy facilitated the adequate charge transportation in related NCs films and modified the interfacial energy-level alignment when the NCs assemble as an emitting layer into LEDs. Finally, based on this NCs synthesis method, high-efficiency green LEDs were achieved, exhibiting the maximum luminance of 1.59 × 104 cd m-2, a current efficiency of 23.7 cd A-1, and an external quantum efficiency of 7.8%. Our finding could provide a new avenue for further development of LEDs and their commercial application.

Keywords: complementary ligands; light-emitting diodes; methylammonium lead bromide; perovskite nanocrystals; surface passivation.

PubMed Disclaimer

LinkOut - more resources