Optimization of fermentation for γ-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue)
- PMID: 35179639
- DOI: 10.1007/s00449-022-02702-2
Optimization of fermentation for γ-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue)
Abstract
γ-Aminobutyric acid (GABA) is a non-protein amino acid with a variety of physiological functions. Recently, yeast Kluyveromyces marxianus strains involved in the catabolism and anabolism of GABA can be used as a microbial platform for GABA production. Okara, rich in nutrients, can be used as a low-cost fermentation substrate for the production of functional materials. This study first proved the advantages of the okara medium to produce GABA by K. marxianus C21 when L-glutamate (L-Glu) or monosodium glutamate (MSG) is the substrate. The highest production of GABA was obtained with 4.31 g/L at optimization condition of culture temperature 35 °C, fermentation time 60 h, and initial pH 4.0. Furthermore, adding peptone significantly increased the GABA production while glucose and vitamin B6 had no positive impact on GABA production. This research provided a powerful new strategy of GABA production by K. marxianus C21 fermentation and is expected to be widely utilized in the functional foods industry to increase GABA content for consumers as a daily supplement as suggested.
Keywords: Kluyveromyces marxianus C21; L-glutamate; Okara; γ-Aminobutyric acid (GABA).
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Similar articles
-
γ-aminobutyric acid production by Kluyveromyces marxianus strains.J Appl Microbiol. 2020 Dec;129(6):1609-1619. doi: 10.1111/jam.14736. Epub 2020 Jun 25. J Appl Microbiol. 2020. PMID: 32506608
-
Production of β-glucosidase from okara fermentation using Kluyveromyces marxianus.J Food Sci Technol. 2021 Jan;58(1):366-376. doi: 10.1007/s13197-020-04550-y. Epub 2020 Jul 8. J Food Sci Technol. 2021. PMID: 33505081 Free PMC article.
-
Optimizing Levilactobacillus brevis NPS-QW 145 Fermentation for Gamma-Aminobutyric Acid (GABA) Production in Soybean Sprout Yogurt-like Product.Foods. 2023 Feb 25;12(5):977. doi: 10.3390/foods12050977. Foods. 2023. PMID: 36900494 Free PMC article.
-
Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology.Int J Food Microbiol. 2020 Nov 16;333:108818. doi: 10.1016/j.ijfoodmicro.2020.108818. Epub 2020 Aug 12. Int J Food Microbiol. 2020. PMID: 32805574 Review.
-
Valorisation of By-Products from Soybean (Glycine max (L.) Merr.) Processing.Molecules. 2020 May 1;25(9):2129. doi: 10.3390/molecules25092129. Molecules. 2020. PMID: 32370073 Free PMC article. Review.
Cited by
-
Lactobacillus brevis M2-Fermented Whey Protein Hydrolysate Increases Slow-Wave Sleep via GABAA Receptors in Rodent Models.Foods. 2024 Jun 27;13(13):2049. doi: 10.3390/foods13132049. Foods. 2024. PMID: 38998562 Free PMC article.
-
Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid.Bioresour Bioprocess. 2024 Mar 16;11(1):32. doi: 10.1186/s40643-024-00747-7. Bioresour Bioprocess. 2024. PMID: 38647854 Free PMC article. Review.
-
A Novel Method for γ-Aminobutyric Acid Biosynthesis Using Glutamate Decarboxylase Entrapped in Polyvinyl Alcohol-Sodium Alginate Capsules.Molecules. 2023 Sep 28;28(19):6844. doi: 10.3390/molecules28196844. Molecules. 2023. PMID: 37836687 Free PMC article.
-
Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid (GABA): a review.PeerJ. 2024 Dec 16;12:e18712. doi: 10.7717/peerj.18712. eCollection 2024. PeerJ. 2024. PMID: 39703920 Free PMC article. Review.
-
Succinic acid production by wine yeasts and the influence of GABA and glutamic acid.Int Microbiol. 2024 Apr;27(2):505-512. doi: 10.1007/s10123-023-00410-9. Epub 2023 Jul 27. Int Microbiol. 2024. PMID: 37498437 Free PMC article.
References
-
- Kostowski W, Hamon M (1999) Anti-anxiety activity—involvement of serotonergic and GABA-ergic activity. Eur Neuropsychopharmacol. https://doi.org/10.1016/S0924-977X(99)90095-0 - DOI
-
- Suwanmanon K, Hsieh P-C (2014) Effect of γ-aminobutyric acid and nattokinase-enriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. J Food Drug Anal 22:485–491. https://doi.org/10.1016/j.jfda.2014.03.005 - DOI - PubMed
-
- Ren T, Zheng P, Zhang K, Liao J, Xiong F, Shen Q, Ma Y, Fang W, Zhu X (2021) Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. Plant Physiol Biochem 159:363–371. https://doi.org/10.1016/j.plaphy.2021.01.003 - DOI - PubMed
-
- Ikegami R, Shimizu I, Sato T, Yoshida Y, Hayashi Y, Suda M, Katsuumi G, Li J, Wakasugi T, Minokoshi Y, Okamoto S, Hinoi E, Nielsen S, Jespersen NZ, Scheele C, Soga T, Minamino T (2018) Gamma-aminobutyric acid signaling in brown adipose tissue promotes systemic metabolic derangement in obesity. Cell Rep 24:2827-2837.e2825. https://doi.org/10.1016/j.celrep.2018.08.024 - DOI - PubMed
-
- Nájera-Martínez M, López-Tapia BP, Aguilera-Alvarado GP, Madera-Sandoval RL, Sánchez-Nieto S, Giron-Pérez MI, Vega-López A (2020) Sub-basal increases of GABA enhance the synthesis of TNF-α, TGF-β, and IL-1β in the immune system organs of the Nile tilapia. J Neuroimmunol 348:577382. https://doi.org/10.1016/j.jneuroim.2020.577382 - DOI - PubMed
MeSH terms
Substances
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources