Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb;26(3):828-845.
doi: 10.26355/eurrev_202202_27991.

Surgical site infection and development of antimicrobial sutures: a review

Affiliations
Free article
Review

Surgical site infection and development of antimicrobial sutures: a review

R A H W Chua et al. Eur Rev Med Pharmacol Sci. 2022 Feb.
Free article

Abstract

Sutures are used to facilitate wound healing and play an important role in ensuring the success of surgical interventions in healthcare facilities. Suture-associated surgical site infection (SSI) may develop when bacterial contaminants colonize the suture surface and establish biofilms that are highly resistant to antibiotic treatment. The outcome of SSI affects postoperative care, leading to high rates of morbidity and mortality, prolonged hospitalization, and increased financial burden. Antimicrobial sutures coated with antiseptics such as triclosan and chlorhexidine have been used to minimize the occurrence of SSI. However, as the efficacy of antiseptic-based sutures may be affected due to the emergence of resistant strains, new approaches for the development of alternative antimicrobial sutures are necessary. This review provides an update and outlook of various approaches in the design and development of antimicrobial sutures. Attaining a zero SSI rate will be possible with the advancement in suturing technology and implementation of good infection control practice in clinical settings.

PubMed Disclaimer

MeSH terms

LinkOut - more resources