Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar:172:134-143.
doi: 10.1016/j.ejpb.2022.02.007. Epub 2022 Feb 15.

Incorporation of phosphatidylserine improves efficiency of lipid based gene delivery systems

Affiliations
Free article

Incorporation of phosphatidylserine improves efficiency of lipid based gene delivery systems

Claudia Lotter et al. Eur J Pharm Biopharm. 2022 Mar.
Free article

Abstract

The essential homeostatic process of dead cell clearance (efferocytosis) is used by viruses in an act of apoptotic mimicry. Among others, virions leverage phosphatidylserine (PS) as an essential "eat me" signal in viral envelopes to increase their infectivity. In a virus-inspired biomimetic approach, we demonstrate that PS can be incorporated into non-viral lipid nanoparticle (LNP) pDNA/mRNA constructs to enhance cellular transfection. The inclusion of the bioactive PS leads to an increased ability of LNPs to deliver nucleic acids in vitro to cultured HuH-7 hepatocellular carcinoma cells resulting in a 6-fold enhanced expression of a transgene. Optimal PS concentrations are in the range of 2.5 to 5% of total lipids. PS-decorated mRNA-LNPs show a 5.2-fold enhancement of in vivo transfection efficiency as compared to mRNA-LNPs devoid of PS. Effects were less pronounced for PS-decorated pDNA-LNPs (3.2-fold increase). Incorporation of small, defined amounts of PS into gene delivery vectors opens new avenues for efficient gene therapy and can be easily extended to other therapeutic systems.

Keywords: Lipid composition; Lipid nanoparticles; Nucleic acid delivery; Phosphatidylserine; Transfection efficiency; Transfection potency.

PubMed Disclaimer

LinkOut - more resources